These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 24243399)
1. PAIRpred: partner-specific prediction of interacting residues from sequence and structure. Minhas Fu; Geiss BJ; Ben-Hur A Proteins; 2014 Jul; 82(7):1142-55. PubMed ID: 24243399 [TBL] [Abstract][Full Text] [Related]
2. Partner-aware prediction of interacting residues in protein-protein complexes from sequence data. Ahmad S; Mizuguchi K PLoS One; 2011; 6(12):e29104. PubMed ID: 22194998 [TBL] [Abstract][Full Text] [Related]
3. APIS: accurate prediction of hot spots in protein interfaces by combining protrusion index with solvent accessibility. Xia JF; Zhao XM; Song J; Huang DS BMC Bioinformatics; 2010 Apr; 11():174. PubMed ID: 20377884 [TBL] [Abstract][Full Text] [Related]
4. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model. Wang S; Sun S; Li Z; Zhang R; Xu J PLoS Comput Biol; 2017 Jan; 13(1):e1005324. PubMed ID: 28056090 [TBL] [Abstract][Full Text] [Related]
5. Accurate prediction of inter-protein residue-residue contacts for homo-oligomeric protein complexes. Yan Y; Huang SY Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33693482 [TBL] [Abstract][Full Text] [Related]
6. LIBRUS: combined machine learning and homology information for sequence-based ligand-binding residue prediction. Kauffman C; Karypis G Bioinformatics; 2009 Dec; 25(23):3099-107. PubMed ID: 19786483 [TBL] [Abstract][Full Text] [Related]
7. HomPPI: a class of sequence homology based protein-protein interface prediction methods. Xue LC; Dobbs D; Honavar V BMC Bioinformatics; 2011 Jun; 12():244. PubMed ID: 21682895 [TBL] [Abstract][Full Text] [Related]
8. CoABind: a novel algorithm for Coenzyme A (CoA)- and CoA derivatives-binding residues prediction. Meng Q; Peng Z; Yang J Bioinformatics; 2018 Aug; 34(15):2598-2604. PubMed ID: 29547921 [TBL] [Abstract][Full Text] [Related]
9. Partner-specific prediction of RNA-binding residues in proteins: A critical assessment. Jung Y; El-Manzalawy Y; Dobbs D; Honavar VG Proteins; 2019 Mar; 87(3):198-211. PubMed ID: 30536635 [TBL] [Abstract][Full Text] [Related]
10. Structure-based prediction of protein- peptide binding regions using Random Forest. Taherzadeh G; Zhou Y; Liew AW; Yang Y Bioinformatics; 2018 Feb; 34(3):477-484. PubMed ID: 29028926 [TBL] [Abstract][Full Text] [Related]
11. Prediction of RNA binding sites in proteins from amino acid sequence. Terribilini M; Lee JH; Yan C; Jernigan RL; Honavar V; Dobbs D RNA; 2006 Aug; 12(8):1450-62. PubMed ID: 16790841 [TBL] [Abstract][Full Text] [Related]
12. Prediction of microRNA-binding residues in protein using a Laplacian support vector machine based on sequence information. Ma X; Guo J; Sun X J Bioinform Comput Biol; 2018 Jun; 16(3):1840009. PubMed ID: 29591488 [TBL] [Abstract][Full Text] [Related]
13. Protein-RNA interface residue prediction using machine learning: an assessment of the state of the art. Walia RR; Caragea C; Lewis BA; Towfic F; Terribilini M; El-Manzalawy Y; Dobbs D; Honavar V BMC Bioinformatics; 2012 May; 13():89. PubMed ID: 22574904 [TBL] [Abstract][Full Text] [Related]
14. CaMELS: In silico prediction of calmodulin binding proteins and their binding sites. Abbasi WA; Asif A; Andleeb S; Minhas FUAA Proteins; 2017 Sep; 85(9):1724-1740. PubMed ID: 28598584 [TBL] [Abstract][Full Text] [Related]
15. ProNA2020 predicts protein-DNA, protein-RNA, and protein-protein binding proteins and residues from sequence. Qiu J; Bernhofer M; Heinzinger M; Kemper S; Norambuena T; Melo F; Rost B J Mol Biol; 2020 Mar; 432(7):2428-2443. PubMed ID: 32142788 [TBL] [Abstract][Full Text] [Related]
16. Prediction of protein-protein interaction sites from weakly homologous template structures using meta-threading and machine learning. Maheshwari S; Brylinski M J Mol Recognit; 2015 Jan; 28(1):35-48. PubMed ID: 26268369 [TBL] [Abstract][Full Text] [Related]
17. Prediction of protein-protein binding site by using core interface residue and support vector machine. Li N; Sun Z; Jiang F BMC Bioinformatics; 2008 Dec; 9():553. PubMed ID: 19102736 [TBL] [Abstract][Full Text] [Related]
18. Predicting DNA-binding sites of proteins from amino acid sequence. Yan C; Terribilini M; Wu F; Jernigan RL; Dobbs D; Honavar V BMC Bioinformatics; 2006 May; 7():262. PubMed ID: 16712732 [TBL] [Abstract][Full Text] [Related]
19. Prediction of protein binding sites in protein structures using hidden Markov support vector machine. Liu B; Wang X; Lin L; Tang B; Dong Q; Wang X BMC Bioinformatics; 2009 Nov; 10():381. PubMed ID: 19925685 [TBL] [Abstract][Full Text] [Related]
20. Predicting protein residue-residue contacts using random forests and deep networks. Luttrell J; Liu T; Zhang C; Wang Z BMC Bioinformatics; 2019 Mar; 20(Suppl 2):100. PubMed ID: 30871477 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]