These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 24243429)

  • 1. Causes of temporal variability of lead in domestic plumbing systems.
    Schock MR
    Environ Monit Assess; 1990 Jul; 15(1):59-82. PubMed ID: 24243429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of pipeline geometry, sample volume, and flow rate on pb monitoring outcomes in copper pipe drinking water supply systems.
    Chang L
    Water Res; 2022 Aug; 222():118890. PubMed ID: 35933812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Variability and sampling of lead (Pb) in drinking water: Assessing potential human exposure depends on the sampling protocol.
    Triantafyllidou S; Burkhardt J; Tully J; Cahalan K; DeSantis M; Lytle D; Schock M
    Environ Int; 2021 Jan; 146():106259. PubMed ID: 33395926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of Water Chemistry, Pipe Material and Stagnation on the Building Plumbing Microbiome.
    Ji P; Parks J; Edwards MA; Pruden A
    PLoS One; 2015; 10(10):e0141087. PubMed ID: 26495985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inherent variability in lead and copper collected during standardized sampling.
    Masters S; Parks J; Atassi A; Edwards MA
    Environ Monit Assess; 2016 Mar; 188(3):177. PubMed ID: 26896965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Corrosion control in water supply systems: effect of pH, alkalinity, and orthophosphate on lead and copper leaching from brass plumbing.
    Tam YS; Elefsiniotis P
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 Oct; 44(12):1251-60. PubMed ID: 19847713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Total allowable concentrations of monomeric inorganic aluminum and hydrated aluminum silicates in drinking water.
    Willhite CC; Ball GL; McLellan CJ
    Crit Rev Toxicol; 2012 May; 42(5):358-442. PubMed ID: 22512666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of plumbing systems on lead content of drinking water and contribution to lead body burden.
    Gulson BL; Law AJ; Korsch MJ; Mizon KJ
    Sci Total Environ; 1994 Apr; 144(1-3):279-84. PubMed ID: 8209233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Survey of New Jersey schools and day care centers for lead in plumbing solder. Identification of lead solder and prevention of exposure to drinking water contaminated with lead from plumbing solder.
    Berkowitz M
    Environ Res; 1995 Oct; 71(1):55-9. PubMed ID: 8757239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distribution system water age can create premise plumbing corrosion hotspots.
    Masters S; Parks J; Atassi A; Edwards MA
    Environ Monit Assess; 2015 Sep; 187(9):559. PubMed ID: 26251058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequential drinking water sampling as a tool for evaluating lead in flint, Michigan.
    Lytle DA; Schock MR; Wait K; Cahalan K; Bosscher V; Porter A; Del Toral M
    Water Res; 2019 Jun; 157():40-54. PubMed ID: 30952007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrification in premise plumbing: role of phosphate, pH and pipe corrosion.
    Zhang Y; Griffin A; Edwards M
    Environ Sci Technol; 2008 Jun; 42(12):4280-4. PubMed ID: 18605545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Situ Monitoring of Pb
    Ma X; Armas SM; Soliman M; Lytle DA; Chumbimuni-Torres K; Tetard L; Lee WH
    Environ Sci Technol; 2018 Feb; 52(4):2126-2133. PubMed ID: 29376323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of lead release potential of new premise plumbing materials.
    Lei IL; Ng DQ; Sable SS; Lin YP
    Environ Sci Pollut Res Int; 2018 Oct; 25(28):27971-27981. PubMed ID: 30066071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of iron and aluminum coagulant metal residuals and lead release from drinking water pipe materials.
    Knowles AD; Nguyen CK; Edwards MA; Stoddart A; McIlwain B; Gagnon GA
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2015; 50(4):414-23. PubMed ID: 25723068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring the aftermath of Flint drinking water contamination crisis: Another case of sampling bias?
    Goovaerts P
    Sci Total Environ; 2017 Jul; 590-591():139-153. PubMed ID: 28259435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of Lead Release in a Simulated Lead-Free Premise Plumbing System Using a Sequential Sampling Approach.
    Ng DQ; Lin YP
    Int J Environ Res Public Health; 2016 Feb; 13(3):. PubMed ID: 26927154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Lead in drinking water, determination of its concentration and effects of new recommendations of the World Health Organization (WHO) on public and private networks management].
    Vilagines R; Leroy P
    Bull Acad Natl Med; 1995 Oct; 179(7):1393-408. PubMed ID: 8556413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unraveling the Causes of Excess Lead in Drinking Water Supply Systems of Densely Populated High-Rise Buildings in Hong Kong.
    Chan SN; Chang L; Choi KW; Lee JHW; Fawell JK; Kwok KYT
    Environ Sci Technol; 2020 Nov; 54(22):14322-14333. PubMed ID: 33142055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of sodium silicate on lead release and colloid size distributions in drinking water.
    Li B; Trueman BF; Munoz S; Locsin JM; Gagnon GA
    Water Res; 2021 Feb; 190():116709. PubMed ID: 33341036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.