BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 24243490)

  • 21. Kinetic properties of catecholoxidase activity of tarantula hemocyanin.
    Jaenicke E; Decker H
    FEBS J; 2008 Apr; 275(7):1518-1528. PubMed ID: 18279382
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tarantula hemocyanin shows phenoloxidase activity.
    Decker H; Rimke T
    J Biol Chem; 1998 Oct; 273(40):25889-92. PubMed ID: 9748264
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Amino-terminal oxygen-binding functional unit of the Rapana thomasiana grosse (gastropod) hemocyanin: carbohydrate content, monosaccharide composition and amino acid sequence studies.
    Stoeva S; Idakieva K; Rachev R; Voelter W; Genov N
    Comp Biochem Physiol B Biochem Mol Biol; 1997 May; 117(1):101-7. PubMed ID: 9180018
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Glycosylation of Rapana thomasiana hemocyanin. Comparison with other prosobranch (gastropod) hemocyanins.
    Idakieva K; Stoeva S; Voelter W; Gielens C
    Comp Biochem Physiol B Biochem Mol Biol; 2004 Jul; 138(3):221-8. PubMed ID: 15253870
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hemocyte components in crustaceans convert hemocyanin into a phenoloxidase-like enzyme.
    Adachi K; Hirata T; Nishioka T; Sakaguchi M
    Comp Biochem Physiol B Biochem Mol Biol; 2003 Jan; 134(1):135-41. PubMed ID: 12524041
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Proteolytic fragmentation of Helix pomatia alpha-hemocyanin: structural domains in the polypeptide chain.
    Brouwer M; Wolters M; Van Bruggen EF
    Biochemistry; 1976 Jun; 15(12):2618-23. PubMed ID: 938632
    [TBL] [Abstract][Full Text] [Related]  

  • 27. C-terminal functional unit of Rapana thomasiana (marine snail, gastropod) hemocyanin isoform RtH1: isolation and characterization.
    Parvanova K; Idakieva K; Todinova S; Genov N
    Biochim Biophys Acta; 2003 Sep; 1651(1-2):153-62. PubMed ID: 14499600
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Complete amino-acid sequence of a functional unit from a molluscan hemocyanin (Helix pomatia).
    Drexel R; Siegmund S; Schneider HJ; Linzen B; Gielens C; Préaux G; Lontie R; Kellermann J; Lottspeich F
    Biol Chem Hoppe Seyler; 1987 Jun; 368(6):617-35. PubMed ID: 3620107
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Switch between tyrosinase and catecholoxidase activity of scorpion hemocyanin by allosteric effectors.
    Nillius D; Jaenicke E; Decker H
    FEBS Lett; 2008 Mar; 582(5):749-54. PubMed ID: 18258201
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phenoloxidase catalyzed coupling of catechols. Identification of novel coupling products.
    Andersen SO; Jacobsen JP; Bojesen G; Roepstorff P
    Biochim Biophys Acta; 1992 Jan; 1118(2):134-8. PubMed ID: 1730029
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Anti-cancer properties of gastropodan hemocyanins in murine model of colon carcinoma.
    Gesheva V; Chausheva S; Mihaylova N; Manoylov I; Doumanova L; Idakieva K; Tchorbanov A
    BMC Immunol; 2014 Aug; 15():34. PubMed ID: 25168124
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multifunctional Roles of Hemocyanins.
    Coates CJ; Costa-Paiva EM
    Subcell Biochem; 2020; 94():233-250. PubMed ID: 32189302
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The catalytic effect of tyrosinase upon oxidation of 2-hydroxyestradiol in presence of catechol.
    Jacobsohn GM; Jacobsohn MK
    Arch Biochem Biophys; 1984 Jul; 232(1):189-96. PubMed ID: 6430238
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Carbohydrate content and monosaccharide composition of Rapana thomasiana grosse (Gastropoda) hemocyanin and its structural subunits. Comparison with gastropodan hemocyanins.
    Stoeva S; Rachev R; Severov S; Voelter W; Genov N
    Comp Biochem Physiol B Biochem Mol Biol; 1995 Apr; 110(4):761-5. PubMed ID: 7749626
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative characterization of the hemocyanin-derived phenol oxidase activity from spiders inhabiting different thermal habitats.
    Cubillos C; Cáceres JC; Villablanca C; Barriga A; Cabrera R; Veloso C
    Comp Biochem Physiol B Biochem Mol Biol; 2021; 253():110548. PubMed ID: 33388391
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hemocyanin-derived phenoloxidase activity with broad temperature stability extending into the cold environment in hemocytes of the hair crab Erimacrus isenbeckii.
    Kim SG; Jung BW; Kim H
    Comp Biochem Physiol B Biochem Mol Biol; 2011 Jun; 159(2):103-8. PubMed ID: 21362494
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Responsiveness of metallothionein and hemocyanin genes to cadmium and copper exposure in the garden snail Cornu aspersum.
    Pedrini-Martha V; Schnegg R; Schäfer GG; Lieb B; Salvenmoser W; Dallinger R
    J Exp Zool A Ecol Integr Physiol; 2021 Feb; 335(2):228-238. PubMed ID: 33146003
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural mechanism of SDS-induced enzyme activity of scorpion hemocyanin revealed by electron cryomicroscopy.
    Cong Y; Zhang Q; Woolford D; Schweikardt T; Khant H; Dougherty M; Ludtke SJ; Chiu W; Decker H
    Structure; 2009 May; 17(5):749-58. PubMed ID: 19446530
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stopped-flow and steady-state study of the diphenolase activity of mushroom tyrosinase.
    Rodríguez-López JN; Fenoll LG; García-Ruiz PA; Varón R; Tudela J; Thorneley RN; García-Cánovas F
    Biochemistry; 2000 Aug; 39(34):10497-506. PubMed ID: 10956040
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Purification, spectroscopic characterization and o-diphenoloxidase activity of hemocyanin from a freshwater gastropod: Pila globosa.
    Naresh KN; Krupanidhi S; Rajan SS
    Protein J; 2013 Jun; 32(5):327-36. PubMed ID: 23645401
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.