BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 24243490)

  • 81. Complete amino acid sequence of dioxygen-binding functional unit of the Rapana thomasiana hemocyanin.
    Stoeva S; Idakieva K; Genov N; Voelter W
    Biochem Biophys Res Commun; 1997 Sep; 238(2):403-10. PubMed ID: 9299521
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Cops and robbers: putative evolution of copper oxygen-binding proteins.
    Decker H; Terwilliger N
    J Exp Biol; 2000 Jun; 203(Pt 12):1777-82. PubMed ID: 10821735
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Metabolism of diethylstilbestrol: identification of a catechol derived from dienestrol.
    Weidenfeld J; Carter P; Reinhold VN; Tanner SB; Engel LL
    Biomed Mass Spectrom; 1978 Oct; 5(10):587-90. PubMed ID: 106901
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Geometric and electronic structure differences between the type 3 copper sites of the multicopper oxidases and hemocyanin/tyrosinase.
    Yoon J; Fujii S; Solomon EI
    Proc Natl Acad Sci U S A; 2009 Apr; 106(16):6585-90. PubMed ID: 19346471
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Comprehensive kinetic and substrate specificity analysis of an arylsulfatase from Helix pomatia using mass spectrometry.
    Correia MSP; Ballet C; Meistermann H; Conway LP; Globisch D
    Bioorg Med Chem; 2019 Mar; 27(6):955-962. PubMed ID: 30738652
    [TBL] [Abstract][Full Text] [Related]  

  • 86. [Stability and catalytic properties of o-diphenol oxidase. 2. Oxidation of monophenols].
    Butovich IA
    Ukr Biokhim Zh (1978); 1986; 58(1):16-21. PubMed ID: 3080836
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Contribution of disulfide bonds and calcium to Molluscan hemocyanin stability.
    Georgieva DN; Genov N; Perbandt M; Voelter W; Betzel C
    Z Naturforsch C J Biosci; 2004; 59(3-4):281-7. PubMed ID: 15241941
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Characterization of phenoloxidase activity from spider Polybetes pythagoricus hemocyanin.
    Laino A; Lavarías S; Suárez G; Lino A; Cunningham M
    J Exp Zool A Ecol Genet Physiol; 2015 Oct; 323(8):547-55. PubMed ID: 26173645
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Mechanistic implications of variable stoichiometries of oxygen consumption during tyrosinase catalyzed oxidation of monophenols and o-diphenols.
    Peñalver MJ; Hiner AN; Rodríguez-López JN; García-Cánovas F; Tudela J
    Biochim Biophys Acta; 2002 May; 1597(1):140-8. PubMed ID: 12009413
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Tyrosinase activity and hemocyanin in the hemolymph of the slipper lobster Scyllarides latus.
    Olianas A; Sanjust E; Pellegrini M; Rescigno A
    J Comp Physiol B; 2005 Aug; 175(6):405-11. PubMed ID: 16010551
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Oxygen binding and subunit interactions in Helix pomatia hemocyanin.
    van Driel R
    Biochemistry; 1973 Jul; 12(14):2696-8. PubMed ID: 4711472
    [No Abstract]   [Full Text] [Related]  

  • 92. Diversity, evolution, and function of myriapod hemocyanins.
    Scherbaum S; Hellmann N; Fernández R; Pick C; Burmester T
    BMC Evol Biol; 2018 Jul; 18(1):107. PubMed ID: 29976142
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Low-resolution molecular structures of isolated functional units from arthropodan and molluscan hemocyanin.
    Grossmann JG; Ali SA; Abbasi A; Zaidi ZH; Stoeva S; Voelter W; Hasnain SS
    Biophys J; 2000 Feb; 78(2):977-81. PubMed ID: 10653810
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Tyrosinase: the four oxidation states of the active site and their relevance to enzymatic activation, oxidation and inactivation.
    Ramsden CA; Riley PA
    Bioorg Med Chem; 2014 Apr; 22(8):2388-95. PubMed ID: 24656803
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Kinetics of the co-operative reaction of Helix pomatia hemocyanin with oxygen. Oxygen binding at low and intermediate oxygen saturations.
    van Driel R; Kuiper HA; Antonini E; Brunori M
    J Mol Biol; 1978 Jun; 121(4):431-9. PubMed ID: 671545
    [No Abstract]   [Full Text] [Related]  

  • 96. Dissociation and oxygen-binding behaviour of beta-hemocyanin from Helix pomatia.
    Zolla L; Kuiper HA; Vecchini P; Antonini E; Brunori M
    Eur J Biochem; 1978 Jul; 87(3):467-73. PubMed ID: 28226
    [No Abstract]   [Full Text] [Related]  

  • 97. Putative phenoloxidases in the tunicate Ciona intestinalis and the origin of the arthropod hemocyanin superfamily.
    Immesberger A; Burmester T
    J Comp Physiol B; 2004 Mar; 174(2):169-80. PubMed ID: 14669024
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Hemocyanin conformational changes associated with SDS-induced phenol oxidase activation.
    Baird S; Kelly SM; Price NC; Jaenicke E; Meesters C; Nillius D; Decker H; Nairn J
    Biochim Biophys Acta; 2007 Nov; 1774(11):1380-94. PubMed ID: 17916450
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Hemocyanin in the exoskeleton of crustaceans: enzymatic properties and immunolocalization.
    Adachi K; Endo H; Watanabe T; Nishioka T; Hirata T
    Pigment Cell Res; 2005 Apr; 18(2):136-43. PubMed ID: 15760343
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Assessment of the
    Georgieva A; Todorova K; Iliev I; Dilcheva V; Vladov I; Petkova S; Dolashki A; Velkova L; Dolashka P; Toshkova R
    Biomedicines; 2023 May; 11(6):. PubMed ID: 37371641
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.