These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

432 related articles for article (PubMed ID: 24243599)

  • 61. Nonnative aggregation of an IgG1 antibody in acidic conditions: part 1. Unfolding, colloidal interactions, and formation of high-molecular-weight aggregates.
    Brummitt RK; Nesta DP; Chang L; Chase SF; Laue TM; Roberts CJ
    J Pharm Sci; 2011 Jun; 100(6):2087-103. PubMed ID: 21213308
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Heterogeneity and Turnover of Intermediates during Amyloid-β (Aβ) Peptide Aggregation Studied by Fluorescence Correlation Spectroscopy.
    Tiiman A; Jarvet J; Gräslund A; Vukojević V
    Biochemistry; 2015 Dec; 54(49):7203-11. PubMed ID: 26574169
    [TBL] [Abstract][Full Text] [Related]  

  • 63. X-ray Crystallographic Structures of Oligomers of Peptides Derived from β2-Microglobulin.
    Spencer RK; Kreutzer AG; Salveson PJ; Li H; Nowick JS
    J Am Chem Soc; 2015 May; 137(19):6304-11. PubMed ID: 25915729
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Resveratrol Induces the Conversion from Amyloid to Amorphous Aggregation of β-lactoglobulin>.
    Ma B; Zhang F; Liu Y; Xie J; Wang X
    Protein Pept Lett; 2018 Feb; 24(12):1113-1119. PubMed ID: 28925863
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The importance of being capped: Terminal capping of an amyloidogenic peptide affects fibrillation propensity and fibril morphology.
    Andreasen M; Skeby KK; Zhang S; Nielsen EH; Klausen LH; Frahm H; Christiansen G; Skrydstrup T; Dong M; Schiøtt B; Otzen D
    Biochemistry; 2014 Nov; 53(44):6968-80. PubMed ID: 25334015
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Identification of an amyloidogenic region on keratoepithelin via synthetic peptides.
    Yuan C; Berscheit HL; Huang AJ
    FEBS Lett; 2007 Jan; 581(2):241-7. PubMed ID: 17207483
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Structural studies reveal that the diverse morphology of beta(2)-microglobulin aggregates is a reflection of different molecular architectures.
    Kardos J; Okuno D; Kawai T; Hagihara Y; Yumoto N; Kitagawa T; Závodszky P; Naiki H; Goto Y
    Biochim Biophys Acta; 2005 Nov; 1753(1):108-20. PubMed ID: 16185940
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A generic mechanism of beta2-microglobulin amyloid assembly at neutral pH involving a specific proline switch.
    Eichner T; Radford SE
    J Mol Biol; 2009 Mar; 386(5):1312-26. PubMed ID: 19452600
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Formation of dynamic soluble surfactant-induced amyloid β peptide aggregation intermediates.
    Abelein A; Kaspersen JD; Nielsen SB; Jensen GV; Christiansen G; Pedersen JS; Danielsson J; Otzen DE; Gräslund A
    J Biol Chem; 2013 Aug; 288(32):23518-28. PubMed ID: 23775077
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Uncovering the Early Assembly Mechanism for Amyloidogenic β2-Microglobulin Using Cross-linking and Native Mass Spectrometry.
    Hall Z; Schmidt C; Politis A
    J Biol Chem; 2016 Feb; 291(9):4626-37. PubMed ID: 26655720
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Prediction of a stable associated liquid of short amyloidogenic peptides.
    Luiken JA; Bolhuis PG
    Phys Chem Chem Phys; 2015 Apr; 17(16):10556-67. PubMed ID: 25804723
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Limited proteolysis in the investigation of beta2-microglobulin amyloidogenic and fibrillar states.
    Monti M; Amoresano A; Giorgetti S; Bellotti V; Pucci P
    Biochim Biophys Acta; 2005 Nov; 1753(1):44-50. PubMed ID: 16213198
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Characterization of Salt-Induced Oligomerization of Human β2-Microglobulin at Low pH.
    Narang D; Singh A; Swasthi HM; Mukhopadhyay S
    J Phys Chem B; 2016 Aug; 120(32):7815-23. PubMed ID: 27467899
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Effect of electrostatics on aggregation of prion protein Sup35 peptide.
    Portillo AM; Krasnoslobodtsev AV; Lyubchenko YL
    J Phys Condens Matter; 2012 Apr; 24(16):164205. PubMed ID: 22466073
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Formation of amyloid fibrils by bovine carbonic anhydrase.
    Rana A; Gupta TP; Bansal S; Kundu B
    Biochim Biophys Acta; 2008 Jun; 1784(6):930-5. PubMed ID: 18395531
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A radish seed antifungal peptide with a high amyloid fibril-forming propensity.
    Garvey M; Meehan S; Gras SL; Schirra HJ; Craik DJ; Van der Weerden NL; Anderson MA; Gerrard JA; Carver JA
    Biochim Biophys Acta; 2013 Aug; 1834(8):1615-23. PubMed ID: 23665069
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Kinetic partitioning between aggregation and vesicle permeabilization by modified ADan.
    Nesgaard L; Vad B; Christiansen G; Otzen D
    Biochim Biophys Acta; 2009 Jan; 1794(1):84-93. PubMed ID: 18977466
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Amyloid fibril formation by a partially structured intermediate state of alpha-chymotrypsin.
    Pallarès I; Vendrell J; Avilés FX; Ventura S
    J Mol Biol; 2004 Sep; 342(1):321-31. PubMed ID: 15313627
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Investigation of the aggregation process of amyloid-β-(16-22) peptides and the dissolution of intermediate aggregates.
    Lin D; Luo Y; Wu S; Ma Q; Wei G; Yang X
    Langmuir; 2014 Mar; 30(11):3170-5. PubMed ID: 24588450
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Selective interception of gelsolin amyloidogenic stretch results in conformationally distinct aggregates with reduced toxicity.
    Arya P; Srivastava A; Vasaikar SV; Mukherjee G; Mishra P; Kundu B
    ACS Chem Neurosci; 2014 Oct; 5(10):982-92. PubMed ID: 25118567
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.