BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 24243810)

  • 1. Prospective real-time head motion correction using inductively coupled wireless NMR probes.
    Sengupta S; Tadanki S; Gore JC; Welch EB
    Magn Reson Med; 2014 Oct; 72(4):971-85. PubMed ID: 24243810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Additional sampling directions improve detection range of wireless radiofrequency probes.
    Hoffmann M; Mada M; Carpenter TA; Sawiak SJ; Williams GB
    Magn Reson Med; 2016 Sep; 76(3):913-8. PubMed ID: 26418189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prospective motion correction using inductively coupled wireless RF coils.
    Ooi MB; Aksoy M; Maclaren J; Watkins RD; Bammer R
    Magn Reson Med; 2013 Sep; 70(3):639-47. PubMed ID: 23813444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Motion compensation for brain PET imaging using wireless MR active markers in simultaneous PET-MR: phantom and non-human primate studies.
    Huang C; Ackerman JL; Petibon Y; Normandin MD; Brady TJ; El Fakhri G; Ouyang J
    Neuroimage; 2014 May; 91():129-37. PubMed ID: 24418501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prospective real-time correction for arbitrary head motion using active markers.
    Ooi MB; Krueger S; Thomas WJ; Swaminathan SV; Brown TR
    Magn Reson Med; 2009 Oct; 62(4):943-54. PubMed ID: 19488989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Marker-free optical stereo motion tracking for in-bore MRI and PET-MRI application.
    Kyme AZ; Aksoy M; Henry DL; Bammer R; Maclaren J
    Med Phys; 2020 Aug; 47(8):3321-3331. PubMed ID: 32329076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prospective head motion compensation for MRI by updating the gradients and radio frequency during data acquisition.
    Dold C; Zaitsev M; Speck O; Firle EA; Hennig J; Sakas G
    Med Image Comput Comput Assist Interv; 2005; 8(Pt 1):482-9. PubMed ID: 16685881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PROMO: Real-time prospective motion correction in MRI using image-based tracking.
    White N; Roddey C; Shankaranarayanan A; Han E; Rettmann D; Santos J; Kuperman J; Dale A
    Magn Reson Med; 2010 Jan; 63(1):91-105. PubMed ID: 20027635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Collapsed fat navigators for brain 3D rigid body motion.
    Engström M; Mårtensson M; Avventi E; Norbeck O; Skare S
    Magn Reson Imaging; 2015 Oct; 33(8):984-91. PubMed ID: 26117701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Properties of a 2D fat navigator for prospective image domain correction of nodding motion in brain MRI.
    Skare S; Hartwig A; Mårtensson M; Avventi E; Engström M
    Magn Reson Med; 2015 Mar; 73(3):1110-9. PubMed ID: 24733744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of prospective head motion correction with NMR field probes and an optical tracking system.
    Eschelbach M; Aghaeifar A; Bause J; Handwerker J; Anders J; Engel EM; Thielscher A; Scheffler K
    Magn Reson Med; 2019 Jan; 81(1):719-729. PubMed ID: 30058220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tracking of rigid head motion during MRI using an EEG system.
    Laustsen M; Andersen M; Xue R; Madsen KH; Hanson LG
    Magn Reson Med; 2022 Aug; 88(2):986-1001. PubMed ID: 35468237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A prospective approach to correct for inter-image head rotation in fMRI.
    Lee CC; Grimm RC; Manduca A; Felmlee JP; Ehman RL; Riederer SJ; Jack CR
    Magn Reson Med; 1998 Feb; 39(2):234-43. PubMed ID: 9469706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prospective head motion correction using FID-guided on-demand image navigators.
    Waszak M; Falkovskiy P; Hilbert T; Bonnier G; Maréchal B; Meuli R; Gruetter R; Kober T; Krueger G
    Magn Reson Med; 2017 Jul; 78(1):193-203. PubMed ID: 27529516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and mitigation of interference sources present in SSB-based wireless MRI receiver arrays.
    Riffe MJ; Twieg MD; Gudino N; Blumenthal CJ; Heilman JA; Griswold MA
    Magn Reson Med; 2013 Dec; 70(6):1775-86. PubMed ID: 23413242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical tracking with two markers for robust prospective motion correction for brain imaging.
    Singh A; Zahneisen B; Keating B; Herbst M; Chang L; Zaitsev M; Ernst T
    MAGMA; 2015 Dec; 28(6):523-34. PubMed ID: 26121941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motion-robust MRI through real-time motion tracking and retrospective super-resolution volume reconstruction.
    Gholipour A; Polak M; van der Kouwe A; Nevo E; Warfield SK
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5722-5. PubMed ID: 22255639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Test Platform for Developing New Optical Position Tracking Technology towards Improved Head Motion Correction in Magnetic Resonance Imaging.
    Silic M; Tam F; Graham SJ
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prospective acquisition correction for head motion with image-based tracking for real-time fMRI.
    Thesen S; Heid O; Mueller E; Schad LR
    Magn Reson Med; 2000 Sep; 44(3):457-65. PubMed ID: 10975899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectroscopic imaging with prospective motion correction and retrospective phase correction.
    Lange T; Maclaren J; Buechert M; Zaitsev M
    Magn Reson Med; 2012 Jun; 67(6):1506-14. PubMed ID: 22135041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.