These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 24243853)

  • 1. Raman spectroscopic evidence of tissue restructuring in heat-induced tissue fusion.
    Su L; Cloyd KL; Arya S; Hedegaard MA; Steele JA; Elson DS; Stevens MM; Hanna GB
    J Biophotonics; 2014 Sep; 7(9):713-23. PubMed ID: 24243853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser-induced tissue fluorescence in radiofrequency tissue-fusion characterization.
    Su L; Fonseca MB; Arya S; Kudo H; Goldin R; Hanna GB; Elson DS
    J Biomed Opt; 2014 Jan; 19(1):15007. PubMed ID: 24449143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Method for creating ideal tissue fusion in soft-tissue structures using radio frequency (RF) energy.
    Shields CA; Schechter DA; Tetzlaff P; Baily AL; Dycus S; Cosgriff N
    Surg Technol Int; 2004; 13():49-55. PubMed ID: 15744675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radiofrequency-induced small bowel thermofusion: an ex vivo study of intestinal seal adequacy using mechanical and imaging modalities.
    Arya S; Hadjievangelou N; Lei S; Kudo H; Goldin RD; Darzi AW; Elson DS; Hanna GB
    Surg Endosc; 2013 Sep; 27(9):3485-96. PubMed ID: 23572219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical, thermal, and electrical monitoring of radio-frequency tissue modification.
    Floume T; Syms RR; Darzi AW; Hanna GB
    J Biomed Opt; 2010; 15(1):018003. PubMed ID: 20210489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time optical monitoring of radio-frequency tissue fusion by continuous wave transmission spectroscopy.
    Floume T; Syms RR; Darzi AW; Hanna GB
    J Biomed Opt; 2008; 13(6):064006. PubMed ID: 19123653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and characterization of a handheld hyperspectral Raman imaging probe system for molecular characterization of tissue on mesoscopic scales.
    St-Arnaud K; Aubertin K; Strupler M; Madore WJ; Grosset AA; Petrecca K; Trudel D; Leblond F
    Med Phys; 2018 Jan; 45(1):328-339. PubMed ID: 29106741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Raman spectroscopic signatures of echovirus 1 uncoating.
    Ruokola P; Dadu E; Kazmertsuk A; Häkkänen H; Marjomäki V; Ihalainen JA
    J Virol; 2014 Aug; 88(15):8504-13. PubMed ID: 24850734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preliminary study of a control algorithm for radio-frequency-induced intestinal tissue fusion.
    Tu L; Zhou Y; Song C; Li Y; Chen L; Xue Y
    Int J Hyperthermia; 2019; 36(1):1297-1306. PubMed ID: 31856611
    [No Abstract]   [Full Text] [Related]  

  • 10. Radio frequency heating of foods: principles, applications and related properties--a review.
    Piyasena P; Dussault C; Koutchma T; Ramaswamy HS; Awuah GB
    Crit Rev Food Sci Nutr; 2003; 43(6):587-606. PubMed ID: 14669879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo assessment of radio frequency induced thermal damage of kidney using optical spectroscopy.
    Parekh DJ; Chiang LW; Herrell SD
    J Urol; 2006 Oct; 176(4 Pt 1):1626-30. PubMed ID: 16952704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advantages and limitations of Raman spectroscopy for molecular diagnostics: an update.
    Eberhardt K; Stiebing C; Matthäus C; Schmitt M; Popp J
    Expert Rev Mol Diagn; 2015 Jun; 15(6):773-87. PubMed ID: 25872466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Raman Spectroscopy Differentiates Each Tissue from the Skin to the Spinal Cord: A Novel Method for Epidural Needle Placement?
    Anderson TA; Kang JW; Gubin T; Dasari RR; So PT
    Anesthesiology; 2016 Oct; 125(4):793-804. PubMed ID: 27466032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent progress in tissue optical clearing for spectroscopic application.
    Sdobnov AY; Darvin ME; Genina EA; Bashkatov AN; Lademann J; Tuchin VV
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 May; 197():216-229. PubMed ID: 29433855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-temperature and high-pressure cubic zirconia anvil cell for Raman spectroscopy.
    Chen J; Zheng H; Xiao W; Zeng Y
    Appl Spectrosc; 2003 Oct; 57(10):1295-9. PubMed ID: 14639761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct monitoring of light mediated hyperthermia induced within mammalian tissues using surface enhanced spatially offset Raman spectroscopy (T-SESORS).
    Gardner B; Matousek P; Stone N
    Analyst; 2019 May; 144(11):3552-3555. PubMed ID: 31049496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Raman and coherent anti-Stokes Raman scattering microspectroscopy for biomedical applications.
    Krafft C; Dietzek B; Schmitt M; Popp J
    J Biomed Opt; 2012 Apr; 17(4):040801. PubMed ID: 22559673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imaging of Scleral Collagen Deformation Using Combined Confocal Raman Microspectroscopy and Polarized Light Microscopy Techniques.
    Chakraborty N; Wang M; Solocinski J; Kim W; Argento A
    PLoS One; 2016; 11(11):e0165520. PubMed ID: 27806070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of single heat-activated Bacillus spores using laser tweezers Raman spectroscopy.
    Zhang P; Setlow P; Li Y
    Opt Express; 2009 Sep; 17(19):16480-91. PubMed ID: 19770863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural changes in cartilage and collagen studied by high temperature Raman spectroscopy.
    Fields M; Spencer N; Dudhia J; McMillan PF
    Biopolymers; 2017 Jun; 107(6):. PubMed ID: 28224610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.