These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
619 related articles for article (PubMed ID: 24243867)
1. Crumpled graphene-molybdenum oxide composite powders: preparation and application in lithium-ion batteries. Choi SH; Kang YC ChemSusChem; 2014 Feb; 7(2):523-8. PubMed ID: 24243867 [TBL] [Abstract][Full Text] [Related]
2. Highly Reversible Lithium-ions Storage of Molybdenum Dioxide Nanoplates for High Power Lithium-ion Batteries. Liu X; Yang J; Hou W; Wang J; Nuli Y ChemSusChem; 2015 Aug; 8(16):2621-4. PubMed ID: 26183572 [TBL] [Abstract][Full Text] [Related]
3. Uniform decoration of vanadium oxide nanocrystals on reduced graphene-oxide balls by an aerosol process for lithium-ion battery cathode material. Choi SH; Kang YC Chemistry; 2014 May; 20(21):6294-9. PubMed ID: 24715540 [TBL] [Abstract][Full Text] [Related]
4. L-cysteine-assisted synthesis of layered MoS₂/graphene composites with excellent electrochemical performances for lithium ion batteries. Chang K; Chen W ACS Nano; 2011 Jun; 5(6):4720-8. PubMed ID: 21574610 [TBL] [Abstract][Full Text] [Related]
5. Facile synthesis of sandwiched Zn2GeO4-graphene oxide nanocomposite as a stable and high-capacity anode for lithium-ion batteries. Zou F; Hu X; Qie L; Jiang Y; Xiong X; Qiao Y; Huang Y Nanoscale; 2014 Jan; 6(2):924-30. PubMed ID: 24280782 [TBL] [Abstract][Full Text] [Related]
6. Synthesis and superior anode performances of TiO2-carbon-rGO composites in lithium-ion batteries. Ren Y; Zhang J; Liu Y; Li H; Wei H; Li B; Wang X ACS Appl Mater Interfaces; 2012 Sep; 4(9):4776-80. PubMed ID: 22900618 [TBL] [Abstract][Full Text] [Related]
7. Yolk-shell, hollow, and single-crystalline ZnCo(2)O(4) powders: preparation using a simple one-pot process and application in lithium-ion batteries. Choi SH; Kang YC ChemSusChem; 2013 Nov; 6(11):2111-6. PubMed ID: 23908071 [TBL] [Abstract][Full Text] [Related]
8. MoO2-ordered mesoporous carbon hybrids as anode materials with highly improved rate capability and reversible capacity for lithium-ion battery. Chen A; Li C; Tang R; Yin L; Qi Y Phys Chem Chem Phys; 2013 Aug; 15(32):13601-10. PubMed ID: 23832242 [TBL] [Abstract][Full Text] [Related]
9. Facile ultrasonic synthesis of CoO quantum dot/graphene nanosheet composites with high lithium storage capacity. Peng C; Chen B; Qin Y; Yang S; Li C; Zuo Y; Liu S; Yang J ACS Nano; 2012 Feb; 6(2):1074-81. PubMed ID: 22224549 [TBL] [Abstract][Full Text] [Related]
10. Interconnected MoO2 nanocrystals with carbon nanocoating as high-capacity anode materials for lithium-ion batteries. Zhou L; Wu HB; Wang Z; Lou XW ACS Appl Mater Interfaces; 2011 Dec; 3(12):4853-7. PubMed ID: 22077330 [TBL] [Abstract][Full Text] [Related]
11. A rationally designed composite of alternating strata of Si nanoparticles and graphene: a high-performance lithium-ion battery anode. Sun F; Huang K; Qi X; Gao T; Liu Y; Zou X; Wei X; Zhong J Nanoscale; 2013 Sep; 5(18):8586-92. PubMed ID: 23893258 [TBL] [Abstract][Full Text] [Related]
12. One-pot synthesis of hematite@graphene core@shell nanostructures for superior lithium storage. Chen D; Quan H; Liang J; Guo L Nanoscale; 2013 Oct; 5(20):9684-9. PubMed ID: 23999932 [TBL] [Abstract][Full Text] [Related]
13. One-pot method for synthesizing spherical-like metal sulfide-reduced graphene oxide composite powders with superior electrochemical properties for lithium-ion batteries. Park GD; Choi SH; Lee JK; Kang YC Chemistry; 2014 Sep; 20(38):12183-9. PubMed ID: 25111441 [TBL] [Abstract][Full Text] [Related]
14. Synergetic compositional and morphological effects for improved Na⁺ storage properties of Ni₃Co₆S₈-reduced graphene oxide composite powders. Choi SH; Kang YC Nanoscale; 2015 Apr; 7(14):6230-7. PubMed ID: 25779096 [TBL] [Abstract][Full Text] [Related]
15. Electrochemical properties of tin oxide flake/reduced graphene oxide/carbon composite powders as anode materials for lithium-ion batteries. Lee SM; Choi SH; Kang YC Chemistry; 2014 Nov; 20(46):15203-7. PubMed ID: 25266199 [TBL] [Abstract][Full Text] [Related]
16. Superior lithium storage performance using sequentially stacked MnO2/reduced graphene oxide composite electrodes. Kim SJ; Yun YJ; Kim KW; Chae C; Jeong S; Kang Y; Choi SY; Lee SS; Choi S ChemSusChem; 2015 Apr; 8(8):1484-91. PubMed ID: 25845554 [TBL] [Abstract][Full Text] [Related]
17. Yolk-shelled cathode materials with extremely high electrochemical performances prepared by spray pyrolysis. Choi SH; Hong YJ; Kang YC Nanoscale; 2013 Sep; 5(17):7867-71. PubMed ID: 23846530 [TBL] [Abstract][Full Text] [Related]
18. The ZnSn(OH)6 nanocube-graphene composite as an anode material for Li-ion batteries. Chen C; Zheng X; Yang J; Wei M Phys Chem Chem Phys; 2014 Oct; 16(37):20073-8. PubMed ID: 25130363 [TBL] [Abstract][Full Text] [Related]
19. Three-dimensional Sn-graphene anode for high-performance lithium-ion batteries. Wang C; Li Y; Chui YS; Wu QH; Chen X; Zhang W Nanoscale; 2013 Nov; 5(21):10599-604. PubMed ID: 24057017 [TBL] [Abstract][Full Text] [Related]
20. Graphene-encapsulated Fe3O4 nanoparticles with 3D laminated structure as superior anode in lithium ion batteries. Wang JZ; Zhong C; Wexler D; Idris NH; Wang ZX; Chen LQ; Liu HK Chemistry; 2011 Jan; 17(2):661-7. PubMed ID: 21207587 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]