These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 2424405)
1. The functions of oligosaccharide chains associated with influenza C viral glycoproteins. II. The role of carbohydrates in the antigenic properties of influenza C viral glycoproteins. Hongo S; Sugawara K; Homma M; Nakamura K Arch Virol; 1986; 89(1-4):189-201. PubMed ID: 2424405 [TBL] [Abstract][Full Text] [Related]
2. Effects of glycosylation on the conformation and antigenicity of influenza C viral glycoproteins. Hongo S; Sugawara K; Homma M; Nakamura K Vaccine; 1985 Sep; 3(3 Suppl):223-6. PubMed ID: 2414939 [TBL] [Abstract][Full Text] [Related]
3. The functions of oligosaccharide chains associated with influenza C viral glycoproteins. I. The formation of influenza C virus particles in the absence of glycosylation. Hongo S; Sugawara K; Homma M; Nakamura K Arch Virol; 1986; 89(1-4):171-87. PubMed ID: 3718234 [TBL] [Abstract][Full Text] [Related]
4. Operational and topological analyses of antigenic sites on influenza C virus glycoprotein and their dependence on glycosylation. Sugawara K; Kitame F; Nishimura H; Nakamura K J Gen Virol; 1988 Mar; 69 ( Pt 3)():537-47. PubMed ID: 2450965 [TBL] [Abstract][Full Text] [Related]
5. Antigenic variation among human strains of influenza C virus detected with monoclonal antibodies to gp88 glycoprotein. Sugawara K; Nishimura H; Kitame F; Nakamura K Virus Res; 1986 Oct; 6(1):27-32. PubMed ID: 3799062 [TBL] [Abstract][Full Text] [Related]
6. [Role of carbohydrate moieties in determining the antigenic properties of influenza C viral glycoproteins]. Nakamura K; Hongo S; Sugawara K Rinsho Byori; 1985 Feb; 33(2):122-8. PubMed ID: 2582162 [No Abstract] [Full Text] [Related]
7. Role of individual oligosaccharide chains in antigenic properties, intracellular transport, and biological activities of influenza C virus hemagglutinin-esterase protein. Sugahara K; Hongo S; Sugawara K; Li ZN; Tsuchiya E; Muraki Y; Matsuzaki Y; Nakamura K Virology; 2001 Jun; 285(1):153-64. PubMed ID: 11414815 [TBL] [Abstract][Full Text] [Related]
8. Construction of an antigenic map of the haemagglutinin-esterase protein of influenza C virus. Sugawara K; Nishimura H; Hongo S; Muraki Y; Kitame F; Nakamura K J Gen Virol; 1993 Aug; 74 ( Pt 8)():1661-6. PubMed ID: 7688412 [TBL] [Abstract][Full Text] [Related]
9. Distribution of the antibody to influenza C virus in dogs and pigs in Yamagata Prefecture, Japan. Ohwada K; Kitame F; Sugawara K; Nishimura H; Homma M; Nakamura K Microbiol Immunol; 1987; 31(12):1173-80. PubMed ID: 2836710 [TBL] [Abstract][Full Text] [Related]
10. Monoclonal antibodies against avian reticuloendotheliosis virus: identification of strain-specific and strain-common epitopes. Cui ZZ; Lee LF; Silva RF; Witter RL J Immunol; 1986 Jun; 136(11):4237-42. PubMed ID: 2422277 [TBL] [Abstract][Full Text] [Related]
11. A study of the advantages and limitations of immunoblotting procedures for the detection of antibodies against influenza virus. Kapaklis-Deliyannis GP; Drummer HE; Brown LE; Tannock GA; Jackson DC Electrophoresis; 1993 Sep; 14(9):926-36. PubMed ID: 8223403 [TBL] [Abstract][Full Text] [Related]
12. Structural analysis of the varicella-zoster virus gp98-gp62 complex: posttranslational addition of N-linked and O-linked oligosaccharide moieties. Montalvo EA; Parmley RT; Grose C J Virol; 1985 Mar; 53(3):761-70. PubMed ID: 2983087 [TBL] [Abstract][Full Text] [Related]
13. An assay for the receptor-destroying activity of influenza C virus. Sugawara K; Kitame F; Homma M; Nakamura K Microbiol Immunol; 1985; 29(12):1207-17. PubMed ID: 3831720 [TBL] [Abstract][Full Text] [Related]
14. Analyses of structural polypeptides of seven different isolates of influenza C virus. Sugawara K; Nakamura K; Homma M J Gen Virol; 1983 Mar; 64 Pt 3():579-87. PubMed ID: 6827247 [TBL] [Abstract][Full Text] [Related]
15. Polymorphism of human cytomegalovirus glycoproteins characterized by monoclonal antibodies. Pereira L; Hoffman M; Tatsuno M; Dondero D Virology; 1984 Nov; 139(1):73-86. PubMed ID: 6208685 [TBL] [Abstract][Full Text] [Related]
16. Location of immunodominant antigenic determinants on fragments of the tick-borne encephalitis virus glycoprotein: evidence for two different mechanisms by which antibodies mediate neutralization and hemagglutination inhibition. Heinz FX; Berger R; Tuma W; Kunz C Virology; 1983 Oct; 130(2):485-501. PubMed ID: 6196909 [TBL] [Abstract][Full Text] [Related]
17. Polypeptide synthesis in MDCK cells infected with human and pig influenza C viruses. Elliott RM; Yuanji G; Desselberger U J Gen Virol; 1984 Nov; 65 ( Pt 11)():1873-80. PubMed ID: 6502139 [TBL] [Abstract][Full Text] [Related]
18. Human herpesvirus-6 glycoprotein H and L homologs are components of the gp100 complex and the gH external domain is the target for neutralizing monoclonal antibodies. Liu DX; Gompels UA; Foa-Tomasi L; Campadelli-Fiume G Virology; 1993 Nov; 197(1):12-22. PubMed ID: 7692666 [TBL] [Abstract][Full Text] [Related]
19. Effect of glycosylation on the conformational epitopes of the glycoprotein of vesicular stomatitis virus (New Jersey serotype). Grigera PR; Mathieu ME; Wagner RR Virology; 1991 Jan; 180(1):1-9. PubMed ID: 1701943 [TBL] [Abstract][Full Text] [Related]
20. Human natural killer cell recognition of herpes simplex virus type 1 glycoproteins: specificity analysis with the use of monoclonal antibodies and antigenic variants. Bishop GA; Marlin SD; Schwartz SA; Glorioso JC J Immunol; 1984 Oct; 133(4):2206-14. PubMed ID: 6206157 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]