These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 24244263)
21. Integrated biophysical approach to fragment screening and validation for fragment-based lead discovery. Silvestre HL; Blundell TL; Abell C; Ciulli A Proc Natl Acad Sci U S A; 2013 Aug; 110(32):12984-9. PubMed ID: 23872845 [TBL] [Abstract][Full Text] [Related]
24. The Biological Properties and Potential Interacting Proteins of d-Alanyl-d-alanine Ligase A from Mycobacterium tuberculosis. Yang S; Xu Y; Wang Y; Ren F; Li S; Ding W; Ma Y; Zhang W Molecules; 2018 Feb; 23(2):. PubMed ID: 29401644 [TBL] [Abstract][Full Text] [Related]
25. 5-tert-butyl-N-pyrazol-4-yl-4,5,6,7-tetrahydrobenzo[d]isoxazole-3-carboxamide derivatives as novel potent inhibitors of Mycobacterium tuberculosis pantothenate synthetase: initiating a quest for new antitubercular drugs. Velaparthi S; Brunsteiner M; Uddin R; Wan B; Franzblau SG; Petukhov PA J Med Chem; 2008 Apr; 51(7):1999-2002. PubMed ID: 18335974 [TBL] [Abstract][Full Text] [Related]
26. Inhibiting Mycobacterium tuberculosis CoaBC by targeting an allosteric site. Mendes V; Green SR; Evans JC; Hess J; Blaszczyk M; Spry C; Bryant O; Cory-Wright J; Chan DS; Torres PHM; Wang Z; Nahiyaan N; O'Neill S; Damerow S; Post J; Bayliss T; Lynch SL; Coyne AG; Ray PC; Abell C; Rhee KY; Boshoff HIM; Barry CE; Mizrahi V; Wyatt PG; Blundell TL Nat Commun; 2021 Jan; 12(1):143. PubMed ID: 33420031 [TBL] [Abstract][Full Text] [Related]
27. The DprE1 enzyme, one of the most vulnerable targets of Mycobacterium tuberculosis. Riccardi G; Pasca MR; Chiarelli LR; Manina G; Mattevi A; Binda C Appl Microbiol Biotechnol; 2013 Oct; 97(20):8841-8. PubMed ID: 24037308 [TBL] [Abstract][Full Text] [Related]
28. Structural and biochemical characterization of compounds inhibiting Mycobacterium tuberculosis pantothenate kinase. Björkelid C; Bergfors T; Raichurkar AK; Mukherjee K; Malolanarasimhan K; Bandodkar B; Jones TA J Biol Chem; 2013 Jun; 288(25):18260-70. PubMed ID: 23661699 [TBL] [Abstract][Full Text] [Related]
29. Optimization of the interligand Overhauser effect for fragment linking: application to inhibitor discovery against Mycobacterium tuberculosis pantothenate synthetase. Sledz P; Silvestre HL; Hung AW; Ciulli A; Blundell TL; Abell C J Am Chem Soc; 2010 Apr; 132(13):4544-5. PubMed ID: 20232910 [TBL] [Abstract][Full Text] [Related]
30. Discovery of novel lysine ɛ-aminotransferase inhibitors: An intriguing potential target for latent tuberculosis. Devi PB; Sridevi JP; Kakan SS; Saxena S; Jeankumar VU; Soni V; Anantaraju HS; Yogeeswari P; Sriram D Tuberculosis (Edinb); 2015 Dec; 95(6):786-794. PubMed ID: 26299907 [TBL] [Abstract][Full Text] [Related]
31. The MM2QM tool for combining docking, molecular dynamics, molecular mechanics, and quantum mechanics. Nowosielski M; Hoffmann M; Kuron A; Korycka-Machala M; Dziadek J J Comput Chem; 2013 Apr; 34(9):750-6. PubMed ID: 23233437 [TBL] [Abstract][Full Text] [Related]
32. Development of ssDNA aptamers as potent inhibitors of Mycobacterium tuberculosis acetohydroxyacid synthase. Baig IA; Moon JY; Lee SC; Ryoo SW; Yoon MY Biochim Biophys Acta; 2015 Oct; 1854(10 Pt A):1338-50. PubMed ID: 25988243 [TBL] [Abstract][Full Text] [Related]
33. Identification of a novel inhibitor of isocitrate lyase as a potent antitubercular agent against both active and non-replicating Mycobacterium tuberculosis. Liu Y; Zhou S; Deng Q; Li X; Meng J; Guan Y; Li C; Xiao C Tuberculosis (Edinb); 2016 Mar; 97():38-46. PubMed ID: 26980494 [TBL] [Abstract][Full Text] [Related]
34. A Phenotypic Based Target Screening Approach Delivers New Antitubercular CTP Synthetase Inhibitors. Esposito M; Szadocka S; Degiacomi G; Orena BS; Mori G; Piano V; Boldrin F; Zemanová J; Huszár S; Barros D; Ekins S; Lelièvre J; Manganelli R; Mattevi A; Pasca MR; Riccardi G; Ballell L; Mikušová K; Chiarelli LR ACS Infect Dis; 2017 Jun; 3(6):428-437. PubMed ID: 28475832 [TBL] [Abstract][Full Text] [Related]
35. Inhibition of MptpB phosphatase from Mycobacterium tuberculosis impairs mycobacterial survival in macrophages. Beresford NJ; Mulhearn D; Szczepankiewicz B; Liu G; Johnson ME; Fordham-Skelton A; Abad-Zapatero C; Cavet JS; Tabernero L J Antimicrob Chemother; 2009 May; 63(5):928-36. PubMed ID: 19240079 [TBL] [Abstract][Full Text] [Related]
38. Solution structure of subunit γ (γ(1-204)) of the Mycobacterium tuberculosis F-ATP synthase and the unique loop of γ(165-178), representing a novel TB drug target. Priya R; Biuković G; Manimekalai MS; Lim J; Rao SP; Grüber G J Bioenerg Biomembr; 2013 Feb; 45(1-2):121-9. PubMed ID: 23104121 [TBL] [Abstract][Full Text] [Related]
39. The inhibition of folylpolyglutamate synthetase (folC) in the prevention of drug resistance in Mycobacterium tuberculosis by traditional Chinese medicine. Hung TC; Chen KB; Lee WY; Chen CY Biomed Res Int; 2014; 2014():635152. PubMed ID: 25050369 [TBL] [Abstract][Full Text] [Related]
40. Inhibitors of the salicylate synthase (MbtI) from Mycobacterium tuberculosis discovered by high-throughput screening. Vasan M; Neres J; Williams J; Wilson DJ; Teitelbaum AM; Remmel RP; Aldrich CC ChemMedChem; 2010 Dec; 5(12):2079-87. PubMed ID: 21053346 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]