These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 24245054)

  • 1. Does soccer cleat design influence the rotational interaction with the playing surface?
    Galbusera F; Tornese DZ; Anasetti F; Bersini S; Volpi P; La Barbera L; Villa T
    Sports Biomech; 2013 Sep; 12(3):293-301. PubMed ID: 24245054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Torsional injuries of the lower limb: an analysis of the frictional torque between different types of football turf and the shoe outsole.
    Smeets K; Jacobs P; Hertogs R; Luyckx JP; Innocenti B; Corten K; Ekstrand J; Bellemans J
    Br J Sports Med; 2012 Dec; 46(15):1078-83. PubMed ID: 22842236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Football playing surface and shoe design affect rotational traction.
    Villwock MR; Meyer EG; Powell JW; Fouty AJ; Haut RC
    Am J Sports Med; 2009 Mar; 37(3):518-25. PubMed ID: 19168808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mechanics of American football cleats on natural grass and infill-type artificial playing surfaces with loads relevant to elite athletes.
    Kent R; Forman JL; Lessley D; Crandall J
    Sports Biomech; 2015 Jun; 14(2):246-57. PubMed ID: 26114885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of soccer shoe cleats on knee joint loads.
    Gehring D; Rott F; Stapelfeldt B; Gollhofer A
    Int J Sports Med; 2007 Dec; 28(12):1030-4. PubMed ID: 17455123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rotational and peak torque stiffness of rugby shoes.
    Ballal MS; Usuelli FG; Montrasio UA; Molloy A; La Barbera L; Villa T; Banfi G
    Foot (Edinb); 2014 Sep; 24(3):107-10. PubMed ID: 25095720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Harmful cleats of football boots: a biomechanical evaluation.
    Bentley JA; Ramanathan AK; Arnold GP; Wang W; Abboud RJ
    Foot Ankle Surg; 2011 Sep; 17(3):140-4. PubMed ID: 21783074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peak torque and rotational stiffness developed at the shoe-surface interface: the effect of shoe type and playing surface.
    Livesay GA; Reda DR; Nauman EA
    Am J Sports Med; 2006 Mar; 34(3):415-22. PubMed ID: 16399930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of ambient temperature on the shoe-surface interface release coefficient.
    Torg JS; Stilwell G; Rogers K
    Am J Sports Med; 1996; 24(1):79-82. PubMed ID: 8638758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incidence, Mechanisms, and Severity of Match-Related Collegiate Men's Soccer Injuries on FieldTurf and Natural Grass Surfaces: A 6-Year Prospective Study.
    Meyers MC
    Am J Sports Med; 2017 Mar; 45(3):708-718. PubMed ID: 27872124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiologic axial load, frictional resistance, and the football shoe-surface interface.
    Cawley PW; Heidt RS; Scranton PE; Losse GM; Howard ME
    Foot Ankle Int; 2003 Jul; 24(7):551-6. PubMed ID: 12921361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A review of football injuries on third and fourth generation artificial turfs compared with natural turf.
    Williams S; Hume PA; Kara S
    Sports Med; 2011 Nov; 41(11):903-23. PubMed ID: 21985213
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Association of lower limb injury with boot cleat design and playing surface in elite soccer.
    O'Connor AM; James IT
    Foot Ankle Clin; 2013 Jun; 18(2):369-80. PubMed ID: 23707183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical analysis of surface-athlete impacts on third-generation artificial turf.
    McGhie D; Ettema G
    Am J Sports Med; 2013 Jan; 41(1):177-85. PubMed ID: 23149018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A review of synthetic playing surfaces, the shoe-surface interface, and lower extremity injuries in athletes.
    Taylor SA; Fabricant PD; Khair MM; Haleem AM; Drakos MC
    Phys Sportsmed; 2012 Nov; 40(4):66-72. PubMed ID: 23306416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of soccer shoe design on player performance and injuries.
    Hennig EM
    Res Sports Med; 2011; 19(3):186-201. PubMed ID: 21722006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mechanical interactions between an American football cleat and playing surfaces in-situ at loads and rates generated by elite athletes: a comparison of playing surfaces.
    Kent R; Forman JL; Crandall J; Lessley D
    Sports Biomech; 2015 Mar; 14(1):1-17. PubMed ID: 25900121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Incidence, mechanisms, and severity of match-related collegiate women's soccer injuries on FieldTurf and natural grass surfaces: a 5-year prospective study.
    Meyers MC
    Am J Sports Med; 2013 Oct; 41(10):2409-20. PubMed ID: 23942283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A biomechanical analysis of the plantar surface of soccer shoes.
    Majid F; Bader DL
    Proc Inst Mech Eng H; 1993; 207(2):93-101. PubMed ID: 8280319
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shoe and Field Surface Risk Factors for Acute Lower Extremity Injuries Among Female Youth Soccer Players.
    OʼKane JW; Gray KE; Levy MR; Neradilek M; Tencer AF; Polissar NL; Schiff MA
    Clin J Sport Med; 2016 May; 26(3):245-50. PubMed ID: 26327288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.