These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 24245145)

  • 41. Recyclable magnetite nanoparticle coated with cationic polymers for adsorption of DNA.
    Rutnakornpituk B; Theppaleak T; Rutnakornpituk M; Vilaivan T
    J Biomater Sci Polym Ed; 2016 Aug; 27(11):1200-10. PubMed ID: 27206488
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Synthesis of monodisperse Fe3O4 nanoparticles by optimized sonochemical method using mono(ethylene glycol) (MEG).
    Phong le V; Hung TQ; Son VT; Kim S; Jeong JH; Kim C; Jeong JR
    J Nanosci Nanotechnol; 2011 Mar; 11(3):2726-9. PubMed ID: 21449463
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Quantitative measurement of ligand exchange on iron oxides via radiolabeled oleic acid.
    Davis K; Qi B; Witmer M; Kitchens CL; Powell BA; Mefford OT
    Langmuir; 2014 Sep; 30(36):10918-25. PubMed ID: 25137089
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Tuning the surface of Au nanoparticles using poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol): enzyme free and label free sugar sensing in serum samples using resonance Rayleigh scattering spectroscopy.
    El Kurdi R; Patra D
    Phys Chem Chem Phys; 2018 Apr; 20(14):9616-9629. PubMed ID: 29578233
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Aqueous dispersions of magnetite nanoparticles complexed with copolyether dispersants: experiments and theory.
    Zhang Q; Thompson MS; Carmichael-Baranauskas AY; Caba BL; Zalich MA; Lin YN; Mefford OT; Davis RM; Riffle JS
    Langmuir; 2007 Jun; 23(13):6927-36. PubMed ID: 17521205
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Convenient synthesis of heterobifunctional poly(ethylene glycol) suitable for the functionalization of iron oxide nanoparticles for biomedical applications.
    Passemard S; Staedler D; Učňová L; Schneiter GS; Kong P; Bonacina L; Juillerat-Jeanneret L; Gerber-Lemaire S
    Bioorg Med Chem Lett; 2013 Sep; 23(17):5006-10. PubMed ID: 23860589
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Facile synthesis of water-stable magnetite nanoparticles for clinical MRI and magnetic hyperthermia applications.
    Maity D; Chandrasekharan P; Yang CT; Chuang KH; Shuter B; Xue JM; Ding J; Feng SS
    Nanomedicine (Lond); 2010 Dec; 5(10):1571-84. PubMed ID: 21143034
    [TBL] [Abstract][Full Text] [Related]  

  • 48. α-((4-Cyanobenzoyl)oxy)-ω-methyl poly(ethylene glycol): a new stabilizer for silver nanoparticles.
    Lutze J; Bañares MA; Pita M; Haase A; Luch A; Taubert A
    Beilstein J Nanotechnol; 2017; 8():627-635. PubMed ID: 28462064
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Sonochemical synthesis of versatile hydrophilic magnetite nanoparticles.
    Marchegiani G; Imperatori P; Mari A; Pilloni L; Chiolerio A; Allia P; Tiberto P; Suber L
    Ultrason Sonochem; 2012 Jul; 19(4):877-82. PubMed ID: 22236507
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Water-soluble hydrogen-bonding interpolymer complex formation between poly(ethylene glycol) and poly(acrylic acid) grafted with poly(2-acrylamido-2-methylpropanesulfonic acid).
    Ivopoulos P; Sotiropoulou M; Bokias G; Staikos G
    Langmuir; 2006 Oct; 22(22):9181-6. PubMed ID: 17042527
    [TBL] [Abstract][Full Text] [Related]  

  • 51. PEG-stabilized core-shell nanoparticles: impact of linear versus dendritic polymer shell architecture on colloidal properties and the reversibility of temperature-induced aggregation.
    Gillich T; Acikgöz C; Isa L; Schlüter AD; Spencer ND; Textor M
    ACS Nano; 2013 Jan; 7(1):316-29. PubMed ID: 23214719
    [TBL] [Abstract][Full Text] [Related]  

  • 52. One-pot synthesis of pegylated ultrasmall iron-oxide nanoparticles and their in vivo evaluation as magnetic resonance imaging contrast agents.
    Lutz JF; Stiller S; Hoth A; Kaufner L; Pison U; Cartier R
    Biomacromolecules; 2006 Nov; 7(11):3132-8. PubMed ID: 17096542
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Low toxicity superparamagnetic magnetite nanoparticles: One-pot facile green synthesis for biological applications.
    Jalil WBF; Pentón-Madrigal A; Mello A; Carneiro FA; Soares RM; Baptista LS; Sinnecker JP; de Oliveira LAS
    Mater Sci Eng C Mater Biol Appl; 2017 Sep; 78():457-466. PubMed ID: 28576009
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Chitosan grafted-poly(ethylene glycol) methacrylate nanoparticles as carrier for controlled release of bevacizumab.
    Savin CL; Popa M; Delaite C; Costuleanu M; Costin D; Peptu CA
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():843-860. PubMed ID: 30813091
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Bioinspired synthesis and characterization of gadolinium-labeled magnetite nanoparticles for dual contrast t1- and T2-weighted magnetic resonance imaging.
    Bae KH; Kim YB; Lee Y; Hwang J; Park H; Park TG
    Bioconjug Chem; 2010 Mar; 21(3):505-12. PubMed ID: 20166678
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Synthesis of hydrophilic superparamagnetic magnetite nanoparticles via thermal decomposition of Fe(acac), in 80 vol% TREG + 20 vol% TREM.
    Maityt D; Pradhan P; Chandrasekharan P; Kale SN; Shuter B; Bahadur D; Feng SS; Xue JM; Ding J
    J Nanosci Nanotechnol; 2011 Mar; 11(3):2730-4. PubMed ID: 21449464
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Preparation of magnetite nanocrystals with surface reactive moieties by one-pot reaction.
    Hu F; Li Z; Tu C; Gao M
    J Colloid Interface Sci; 2007 Jul; 311(2):469-74. PubMed ID: 17433352
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Well-Defined SiO2@P(EtOx-stat-EI) Core-Shell Hybrid Nanoparticles via Sol-Gel Processes.
    Eckardt O; Pietsch C; Zumann O; von der Lühe M; Brauer DS; Schacher FH
    Macromol Rapid Commun; 2016 Feb; 37(4):337-42. PubMed ID: 26676077
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Delivery of messenger RNA using poly(ethylene imine)-poly(ethylene glycol)-copolymer blends for polyplex formation: biophysical characterization and in vitro transfection properties.
    Debus H; Baumhof P; Probst J; Kissel T
    J Control Release; 2010 Dec; 148(3):334-43. PubMed ID: 20854856
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Functionalization of magnetic nanoparticles with dendritic-linear-brush-like triblock copolymers and their drug release properties.
    He X; Wu X; Cai X; Lin S; Xie M; Zhu X; Yan D
    Langmuir; 2012 Aug; 28(32):11929-38. PubMed ID: 22799877
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.