These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 24245295)

  • 1. Growth mechanism of cubic MgO granule via common ion effect.
    Choi SB; Kim NW; Lee DK; Yu H
    J Nanosci Nanotechnol; 2013 Nov; 13(11):7577-80. PubMed ID: 24245295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shape-dependent catalytic activity of CuO/MgO nanocatalysts.
    Wang D; Wang X; Xu R; Li Y
    J Nanosci Nanotechnol; 2007 Oct; 7(10):3602-6. PubMed ID: 18330179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A three-dimensional, biaxially textured oxide nanofence composed of MgO single crystal nanobelt segments.
    Wee SH; Goyal A; More KL; Specht E
    Nanotechnology; 2009 May; 20(21):215608. PubMed ID: 19423939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of gold nanotubes from removable MgO nanowires templates.
    Kim HW; Lee JW; Kebede MA; Kim HS; Srinivasa B; Kong MH; Lee C
    J Nanosci Nanotechnol; 2008 Nov; 8(11):5715-9. PubMed ID: 19198294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and characterization of one-dimensional MgO nanostructures.
    Kar S; Chaudhuri S
    J Nanosci Nanotechnol; 2006 May; 6(5):1447-52. PubMed ID: 16792379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and optical properties of ZnO nanorods on Mg0.2Zn0.8O seed layers grown by hydrothermal method.
    Kim MS; Kim DY; Kim SO; Leem JY
    J Nanosci Nanotechnol; 2013 May; 13(5):3408-12. PubMed ID: 23858868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of MgO granule and its precursors via common ion effect.
    Choi SB; Lee DK; Yu H
    J Nanosci Nanotechnol; 2012 Jul; 12(7):5778-82. PubMed ID: 22966653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of the optical and dielectric properties of TiO2 nanocrystals prepared by the Pechini method.
    Graça MP; Nico C; Peres M; Valente MA; Monteiro T
    J Nanosci Nanotechnol; 2012 Nov; 12(11):8600-6. PubMed ID: 23421250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molten salt synthesis of nanocrystalline phase of high dielectric constant material CaCu3Ti4O12.
    Prakash BS; Varma KB
    J Nanosci Nanotechnol; 2008 Nov; 8(11):5762-9. PubMed ID: 19198302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-assembly and graft polymerization route to Monodispersed Fe3O4@SiO2--polyaniline core-shell composite nanoparticles: physical properties.
    Reddy KR; Lee KP; Kim JY; Lee Y
    J Nanosci Nanotechnol; 2008 Nov; 8(11):5632-9. PubMed ID: 19198281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resonance energy transfer from beta-cyclodextrin-capped ZnO:MgO nanocrystals to included Nile Red guest molecules in aqueous media.
    Rakshit S; Vasudevan S
    ACS Nano; 2008 Jul; 2(7):1473-9. PubMed ID: 19206317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of surface morphology of ZnO seed layers on growth of ZnO nanostructures prepared by hydrothermal method and annealing.
    Yim KG; Kim MS; Leem JY
    J Nanosci Nanotechnol; 2013 May; 13(5):3586-90. PubMed ID: 23858908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth morphology and optical properties of ZnO nanostructures on different substrates.
    Panda NR; Sahu D; Mohanty S; Acharya BS
    J Nanosci Nanotechnol; 2013 Jan; 13(1):427-33. PubMed ID: 23646750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation SnO₂ nanolayer on flexible polyimide substrates via direct ion-exchange and in situ oxidation process.
    Cui G; Wu D; Qi S; Jin S; Wu Z; Jin R
    ACS Appl Mater Interfaces; 2011 Mar; 3(3):789-94. PubMed ID: 21370875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large-scale synthesis and characterization of hexagonal prism-shaped SiC nanowires.
    Chen J; Yang G; Wu R; Pan Y; Lin J; Zhai R; Wu L
    J Nanosci Nanotechnol; 2008 Apr; 8(4):2151-6. PubMed ID: 18572627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MgCO3·3H2O and MgO complex nanostructures: controllable biomimetic fabrication and physical chemical properties.
    Wu X; Cao H; Yin G; Yin J; Lu Y; Li B
    Phys Chem Chem Phys; 2011 Mar; 13(11):5047-52. PubMed ID: 21170433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct observation of the growth process of MgO nanoflowers by a simple chemical route.
    Fang XS; Ye CH; Zhang LD; Zhang JX; Zhao JW; Yan P
    Small; 2005 Apr; 1(4):422-8. PubMed ID: 17193467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of ZnO nanoparticles on the structure and ionic relaxation of poly(ethylene oxide)-LiI polymer electrolyte nanocomposites.
    Bhattacharya S; Ghosh A
    J Nanosci Nanotechnol; 2008 Apr; 8(4):1922-6. PubMed ID: 18572594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel ZnO/MgO/Fe2O3 composite optomagnetic nanoparticles.
    Kamińska I; Sikora B; Fronc K; Dziawa P; Sobczak K; Minikayev R; Paszkowicz W; Elbaum D
    J Phys Condens Matter; 2013 May; 25(19):194105. PubMed ID: 23612042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large dielectric constant in zirconia polypyrrole hybrid nanocomposites.
    Dey A; De SK
    J Nanosci Nanotechnol; 2007 Jun; 7(6):2010-5. PubMed ID: 17654982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.