BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 24245552)

  • 1. Growth of nanobipyramid by using large sized Au decahedra as seeds.
    Zhou G; Yang Y; Han S; Chen W; Fu Y; Zou C; Zhang L; Huang S
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):13340-52. PubMed ID: 24245552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The unusual effect of AgNO3 on the growth of Au nanostructures and their catalytic performance.
    Li X; Yang Y; Zhou G; Han S; Wang W; Zhang L; Chen W; Zou C; Huang S
    Nanoscale; 2013 Jun; 5(11):4976-85. PubMed ID: 23636467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gold Nanobipyramids: An Emerging and Versatile Type of Plasmonic Nanoparticles.
    Chow TH; Li N; Bai X; Zhuo X; Shao L; Wang J
    Acc Chem Res; 2019 Aug; 52(8):2136-2146. PubMed ID: 31368690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile Growth of High-Yield Gold Nanobipyramids Induced by Chloroplatinic Acid for High Refractive Index Sensing Properties.
    Fang C; Zhao G; Xiao Y; Zhao J; Zhang Z; Geng B
    Sci Rep; 2016 Nov; 6():36706. PubMed ID: 27841289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gold nanobipyramid-embedded silver-platinum hollow nanostructures for monitoring stepwise reduction and oxidation reactions.
    Xu J; Yun Q; Wang C; Li M; Cheng S; Ruan Q; Zhu X; Kan C
    Nanoscale; 2020 Dec; 12(46):23663-23672. PubMed ID: 33216083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystalline structure-dependent growth of bimetallic nanostructures.
    Li Q; Jiang R; Ming T; Fang C; Wang J
    Nanoscale; 2012 Nov; 4(22):7070-7. PubMed ID: 23064156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioconjugation of Gold Nanobipyramids for SERS Detection and Targeted Photothermal Therapy in Breast Cancer.
    Feng J; Chen L; Xia Y; Xing J; Li Z; Qian Q; Wang Y; Wu A; Zeng L; Zhou Y
    ACS Biomater Sci Eng; 2017 Apr; 3(4):608-618. PubMed ID: 33429628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Size-dependent longitudinal plasmon resonance wavelength and extraordinary scattering properties of Au nanobipyramids.
    Wang W; Yu P; Zhong Z; Tong X; Liu T; Li Y; Ashalley E; Chen H; Wu J; Wang Z
    Nanotechnology; 2018 Aug; 29(35):355402. PubMed ID: 29882742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facile synthesis of concave decahedra enclosed by high-index facets and truncated decahedra with a large size.
    Zhang LF; Wang L; Zhong SL; Huang YX; Xu AW
    Dalton Trans; 2012 Apr; 41(16):4948-54. PubMed ID: 22451242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of ferrous ion by etching-based multi-colorimetric sensing of gold nanobipyramids.
    He Z; Zhu J; Weng GJ; Li JJ; Zhao JW
    Nanotechnology; 2020 Aug; 31(33):335505. PubMed ID: 32353840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gold nanobipyramid-embedded ultrathin metal nanoframes for
    Zhu X; Xu J; Zhang H; Cui X; Guo Y; Cheng S; Kan C; Wang J
    Chem Sci; 2020 Feb; 11(12):3198-3207. PubMed ID: 34122825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epitaxial Growth of Twinned Au-Pt Core-Shell Star-Shaped Decahedra as Highly Durable Electrocatalysts.
    Bian T; Zhang H; Jiang Y; Jin C; Wu J; Yang H; Yang D
    Nano Lett; 2015 Dec; 15(12):7808-15. PubMed ID: 26524225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. {331}-Faceted trisoctahedral gold nanocrystals: synthesis, superior electrocatalytic performance and highly efficient SERS activity.
    Song Y; Miao T; Zhang P; Bi C; Xia H; Wang D; Tao X
    Nanoscale; 2015 May; 7(18):8405-15. PubMed ID: 25877040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gold Nanobipyramid-Directed Growth of Length-Variable Silver Nanorods with Multipolar Plasmon Resonances.
    Zhuo X; Zhu X; Li Q; Yang Z; Wang J
    ACS Nano; 2015 Jul; 9(7):7523-35. PubMed ID: 26135608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diffusion and seed shape: intertwined parameters in the synthesis of branched metal nanostructures.
    Weiner RG; DeSantis CJ; Cardoso MB; Skrabalak SE
    ACS Nano; 2014 Aug; 8(8):8625-35. PubMed ID: 25133784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A universal route with fine kinetic control to a family of penta-twinned gold nanocrystals.
    Zhang T; Li X; Sun Y; Liu D; Li C; Cai W; Li Y
    Chem Sci; 2021 Oct; 12(38):12631-12639. PubMed ID: 34703548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal overgrowth on gold nanorods: tuning the shape, facet, aspect ratio, and composition of the nanorods.
    Song JH; Kim F; Kim D; Yang P
    Chemistry; 2005 Jan; 11(3):910-6. PubMed ID: 15593133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly reproducible surface-enhanced Raman scattering-active Au nanostructures prepared by simple electrodeposition: origin of surface-enhanced Raman scattering activity and applications as electrochemical substrates.
    Choi S; Ahn M; Kim J
    Anal Chim Acta; 2013 May; 779():1-7. PubMed ID: 23663665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gold nanorod arrays with good reproducibility for high-performance surface-enhanced Raman scattering.
    Liao Q; Mu C; Xu DS; Ai XC; Yao JN; Zhang JP
    Langmuir; 2009 Apr; 25(8):4708-14. PubMed ID: 19366228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Site-specific growth of Au-Pd alloy horns on Au nanorods: a platform for highly sensitive monitoring of catalytic reactions by surface enhancement Raman spectroscopy.
    Huang J; Zhu Y; Lin M; Wang Q; Zhao L; Yang Y; Yao KX; Han Y
    J Am Chem Soc; 2013 Jun; 135(23):8552-61. PubMed ID: 23675958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.