These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 24245675)

  • 41. Theory of input spike auto- and cross-correlations and their effect on the response of spiking neurons.
    Moreno-Bote R; Renart A; Parga N
    Neural Comput; 2008 Jul; 20(7):1651-705. PubMed ID: 18254697
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A continuous entropy rate estimator for spike trains using a K-means-based context tree.
    Lin TW; Reeke GN
    Neural Comput; 2010 Apr; 22(4):998-1024. PubMed ID: 19922298
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Estimating information rates with confidence intervals in neural spike trains.
    Shlens J; Kennel MB; Abarbanel HD; Chichilnisky EJ
    Neural Comput; 2007 Jul; 19(7):1683-719. PubMed ID: 17521276
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Estimating summary statistics in the spike-train space.
    Wu W; Srivastava A
    J Comput Neurosci; 2013 Jun; 34(3):391-410. PubMed ID: 23053864
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A novel tri-component scheme for classifying neuronal discharge patterns.
    Kumbhare D; Baron MS
    J Neurosci Methods; 2015 Jan; 239():148-61. PubMed ID: 25256642
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Using Tweedie distributions for fitting spike count data.
    Moshitch D; Nelken I
    J Neurosci Methods; 2014 Mar; 225():13-28. PubMed ID: 24440773
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A reproducing kernel Hilbert space framework for spike train signal processing.
    Paiva AR; Park I; Príncipe JC
    Neural Comput; 2009 Feb; 21(2):424-49. PubMed ID: 19431265
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A Model for Single Neuron Activity With Refractory Effects and Spike Rate Estimation Techniques.
    Monk S; Leib H
    IEEE Trans Neural Syst Rehabil Eng; 2017 Apr; 25(4):306-322. PubMed ID: 27390180
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Modeling stimulus-dependent variability improves decoding of population neural responses.
    Ghanbari A; Lee CM; Read HL; Stevenson IH
    J Neural Eng; 2019 Oct; 16(6):066018. PubMed ID: 31404915
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Parameter identification for a local field potential driven model of the Parkinsonian subthalamic nucleus spike activity.
    Michmizos KP; Sakas D; Nikita KS
    Neural Netw; 2012 Dec; 36():146-56. PubMed ID: 23131592
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A simple model of long-term spike train regularization.
    Brandman R; Nelson ME
    Neural Comput; 2002 Jul; 14(7):1575-97. PubMed ID: 12079547
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Note on the coefficient of variations of neuronal spike trains.
    Lengler J; Steger A
    Biol Cybern; 2017 Aug; 111(3-4):229-235. PubMed ID: 28432423
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dependence of neuronal correlations on filter characteristics and marginal spike train statistics.
    Tetzlaff T; Rotter S; Stark E; Abeles M; Aertsen A; Diesmann M
    Neural Comput; 2008 Sep; 20(9):2133-84. PubMed ID: 18439140
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Generating spike trains with specified correlation coefficients.
    Macke JH; Berens P; Ecker AS; Tolias AS; Bethge M
    Neural Comput; 2009 Feb; 21(2):397-423. PubMed ID: 19196233
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The dependence of spike field coherence on expected intensity.
    Lepage KQ; Kramer MA; Eden UT
    Neural Comput; 2011 Sep; 23(9):2209-41. PubMed ID: 21671792
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Multiscale spike train variability in primary electrosensory afferents.
    Nelson ME
    J Physiol Paris; 2002; 96(5-6):507-16. PubMed ID: 14692498
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Correcting the bias of spike field coherence estimators due to a finite number of spikes.
    Grasse DW; Moxon KA
    J Neurophysiol; 2010 Jul; 104(1):548-58. PubMed ID: 20484529
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Estimating the entropy rate of spike trains via Lempel-Ziv complexity.
    Amigó JM; Szczepański J; Wajnryb E; Sanchez-Vives MV
    Neural Comput; 2004 Apr; 16(4):717-36. PubMed ID: 15025827
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Sequential Monte Carlo point-process estimation of kinematics from neural spiking activity for brain-machine interfaces.
    Wang Y; Paiva AR; Príncipe JC; Sanchez JC
    Neural Comput; 2009 Oct; 21(10):2894-930. PubMed ID: 19548797
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Generation of spatiotemporally correlated spike trains and local field potentials using a multivariate autoregressive process.
    Gutnisky DA; Josić K
    J Neurophysiol; 2010 May; 103(5):2912-30. PubMed ID: 20032244
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.