These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 24245675)

  • 61. The time-rescaling theorem and its application to neural spike train data analysis.
    Brown EN; Barbieri R; Ventura V; Kass RE; Frank LM
    Neural Comput; 2002 Feb; 14(2):325-46. PubMed ID: 11802915
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Fano Factor: A Potentially Useful Information.
    Rajdl K; Lansky P; Kostal L
    Front Comput Neurosci; 2020; 14():569049. PubMed ID: 33328945
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Neuronal coding and spiking randomness.
    Kostal L; Lansky P; Rospars JP
    Eur J Neurosci; 2007 Nov; 26(10):2693-701. PubMed ID: 18001270
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Distortion of neural signals by spike coding.
    Goldberg DH; Andreou AG
    Neural Comput; 2007 Oct; 19(10):2797-839. PubMed ID: 17716013
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Ergodicity and parameter estimates in auditory neural circuits.
    Toth PG; Marsalek P; Pokora O
    Biol Cybern; 2018 Apr; 112(1-2):41-55. PubMed ID: 29082437
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The spike trains of inhibited pacemaker neurons seen through the magnifying glass of nonlinear analyses.
    Segundo JP; Sugihara G; Dixon P; Stiber M; Bersier LF
    Neuroscience; 1998 Dec; 87(4):741-66. PubMed ID: 9759964
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Direct estimation of inhomogeneous Markov interval models of spike trains.
    Wójcik DK; Mochol G; Jakuczun W; Wypych M; Waleszczyk WJ
    Neural Comput; 2009 Aug; 21(8):2105-13. PubMed ID: 19538090
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Strictly positive-definite spike train kernels for point-process divergences.
    Park IM; Seth S; Rao M; Príncipe JC
    Neural Comput; 2012 Aug; 24(8):2223-50. PubMed ID: 22509968
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Unbiased estimation of precise temporal correlations between spike trains.
    Stark E; Abeles M
    J Neurosci Methods; 2009 Apr; 179(1):90-100. PubMed ID: 19167428
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Spike-train variability of auditory neurons in vivo: dynamic responses follow predictions from constant stimuli.
    Schaette R; Gollisch T; Herz AV
    J Neurophysiol; 2005 Jun; 93(6):3270-81. PubMed ID: 15689392
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Estimating membrane voltage correlations from extracellular spike trains.
    Dorn JD; Ringach DL
    J Neurophysiol; 2003 Apr; 89(4):2271-8. PubMed ID: 12686584
    [TBL] [Abstract][Full Text] [Related]  

  • 72. On a spike train probability model with interacting neural units.
    Di Crescenzo A; Longobardi M; Martinucci B
    Math Biosci Eng; 2014 Apr; 11(2):217-31. PubMed ID: 24245724
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Impact of correlated inputs on the output of the integrate- and-fire model.
    Feng J; Brown D
    Neural Comput; 2000 Mar; 12(3):671-92. PubMed ID: 10769326
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Assessing neuronal coherence with single-unit, multi-unit, and local field potentials.
    Zeitler M; Fries P; Gielen S
    Neural Comput; 2006 Sep; 18(9):2256-81. PubMed ID: 16846392
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Assessment of bursting activity and interspike intervals variability: a case study for methodological comparison.
    Robin K; Maurice N; Degos B; Deniau JM; Martinerie J; Pezard L
    J Neurosci Methods; 2009 Apr; 179(1):142-9. PubMed ID: 19428520
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Digital spiking neuron and its learning for approximation of various spike-trains.
    Torikai H; Funew A; Saito T
    Neural Netw; 2008; 21(2-3):140-9. PubMed ID: 18272333
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Optimizing time histograms for non-Poissonian spike trains.
    Omi T; Shinomoto S
    Neural Comput; 2011 Dec; 23(12):3125-44. PubMed ID: 21919781
    [TBL] [Abstract][Full Text] [Related]  

  • 78. On the precision of neural computation with interaural level differences in the lateral superior olive.
    Bures Z; Marsalek P
    Brain Res; 2013 Nov; 1536():16-26. PubMed ID: 23684714
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A characterization of the time-rescaled gamma process as a model for spike trains.
    Shimokawa T; Koyama S; Shinomoto S
    J Comput Neurosci; 2010 Aug; 29(1-2):183-191. PubMed ID: 19844786
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Multiple tests based on a gaussian approximation of the unitary events method with delayed coincidence count.
    Tuleau-Malot C; Rouis A; Grammont F; Reynaud-Bouret P
    Neural Comput; 2014 Jul; 26(7):1408-54. PubMed ID: 24708365
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.