These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 24245686)

  • 1. Noncovalent immobilization of electrocatalysts on carbon electrodes for fuel production.
    Blakemore JD; Gupta A; Warren JJ; Brunschwig BS; Gray HB
    J Am Chem Soc; 2013 Dec; 135(49):18288-91. PubMed ID: 24245686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noncovalent Immobilization of a Molecular Iron-Based Electrocatalyst on Carbon Electrodes for Selective, Efficient CO2-to-CO Conversion in Water.
    Maurin A; Robert M
    J Am Chem Soc; 2016 Mar; 138(8):2492-5. PubMed ID: 26886174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graphite-Conjugated Rhenium Catalysts for Carbon Dioxide Reduction.
    Oh S; Gallagher JR; Miller JT; Surendranath Y
    J Am Chem Soc; 2016 Feb; 138(6):1820-3. PubMed ID: 26804469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graphene-Immobilized fac-Re(bipy)(CO)3Cl for Syngas Generation from Carbon Dioxide.
    Zhou X; Micheroni D; Lin Z; Poon C; Li Z; Lin W
    ACS Appl Mater Interfaces; 2016 Feb; 8(6):4192-8. PubMed ID: 26799656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immobilization and electrochemical properties of ruthenium and iridium complexes on carbon electrodes.
    Gupta A; Blakemore JD; Brunschwig BS; Gray HB
    J Phys Condens Matter; 2016 Mar; 28(9):094002. PubMed ID: 26871865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Factors affecting the electrochemical regeneration of NADH by (2,2'-bipyridyl) (pentamethylcyclopentadienyl)-rhodium complexes: impact on their immobilization onto electrode surfaces.
    Walcarius A; Nasraoui R; Wang Z; Qu F; Urbanova V; Etienne M; Göllü M; Demir AS; Gajdzik J; Hempelmann R
    Bioelectrochemistry; 2011 Aug; 82(1):46-54. PubMed ID: 21700510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A 2,2'-bipyridine-containing covalent organic framework bearing rhenium(i) tricarbonyl moieties for CO
    Popov DA; Luna JM; Orchanian NM; Haiges R; Downes CA; Marinescu SC
    Dalton Trans; 2018 Dec; 47(48):17450-17460. PubMed ID: 30499569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noncovalent immobilization and surface characterization of lanthanide complexes on carbon electrodes.
    Lionetti D; Day VW; Blakemore JD
    Dalton Trans; 2017 Sep; 46(35):11779-11789. PubMed ID: 28829062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Push or Pull? Proton Responsive Ligand Effects in Rhenium Tricarbonyl CO2 Reduction Catalysts.
    Manbeck GF; Muckerman JT; Szalda DJ; Himeda Y; Fujita E
    J Phys Chem B; 2015 Jun; 119(24):7457-66. PubMed ID: 25697424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic contrasts between manganese and rhenium bipyridine electrocatalysts for the reduction of carbon dioxide.
    Riplinger C; Sampson MD; Ritzmann AM; Kubiak CP; Carter EA
    J Am Chem Soc; 2014 Nov; 136(46):16285-98. PubMed ID: 25327956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of rhenium speciation on the stability and activity of Re/Pd bimetal catalysts used for perchlorate reduction.
    Choe JK; Shapley JR; Strathmann TJ; Werth CJ
    Environ Sci Technol; 2010 Jun; 44(12):4716-21. PubMed ID: 20481620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced Electrochemical CO
    Talukdar K; Sinha Roy S; Amatya E; Sleeper EA; Le Magueres P; Jurss JW
    Inorg Chem; 2020 May; 59(9):6087-6099. PubMed ID: 32309933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site Isolation Leads to Stable Photocatalytic Reduction of CO2 over a Rhenium-Based Catalyst.
    Liang W; Church TL; Zheng S; Zhou C; Haynes BS; D'Alessandro DM
    Chemistry; 2015 Dec; 21(51):18576-9. PubMed ID: 26538203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust Binding of Disulfide-Substituted Rhenium Bipyridyl Complexes for CO
    Cattaneo M; Guo F; Kelly HR; Videla PE; Kiefer L; Gebre S; Ge A; Liu Q; Wu S; Lian T; Batista VS
    Front Chem; 2020; 8():86. PubMed ID: 32117901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface Immobilization of Molecular Electrocatalysts for Energy Conversion.
    Bullock RM; Das AK; Appel AM
    Chemistry; 2017 Jun; 23(32):7626-7641. PubMed ID: 28178367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Manganese as a substitute for rhenium in CO2 reduction catalysts: the importance of acids.
    Smieja JM; Sampson MD; Grice KA; Benson EE; Froehlich JD; Kubiak CP
    Inorg Chem; 2013 Mar; 52(5):2484-91. PubMed ID: 23418912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning Product Selectivity for Aqueous CO
    Reuillard B; Ly KH; Rosser TE; Kuehnel MF; Zebger I; Reisner E
    J Am Chem Soc; 2017 Oct; 139(41):14425-14435. PubMed ID: 28885841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Charged Macromolecular Rhenium Bipyridine Catalysts with Tunable CO
    Sahu S; Cheung PL; Machan CW; Chabolla SA; Kubiak CP; Gianneschi NC
    Chemistry; 2017 Jun; 23(36):8619-8622. PubMed ID: 28467613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterogeneous Aqueous CO
    Sinha S; Sonea A; Shen W; Hanson SS; Warren JJ
    Inorg Chem; 2019 Aug; 58(16):10454-10461. PubMed ID: 31343871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Making oxygen with ruthenium complexes.
    Concepcion JJ; Jurss JW; Brennaman MK; Hoertz PG; Patrocinio AO; Murakami Iha NY; Templeton JL; Meyer TJ
    Acc Chem Res; 2009 Dec; 42(12):1954-65. PubMed ID: 19817345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.