These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 24245725)

  • 21. On the effect of a therapy able to modify both the growth rates in a Gompertz stochastic model.
    Albano G; Giorno V; Román-Román P; Torres-Ruiz F
    Math Biosci; 2013 Sep; 245(1):12-21. PubMed ID: 23347900
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stochastic simulation of the chemoton.
    Van Segbroeck S; Nowé A; Lenaerts T
    Artif Life; 2009; 15(2):213-26. PubMed ID: 19199383
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analysis and simulation of division- and label-structured population models : a new tool to analyze proliferation assays.
    Hasenauer J; Schittler D; Allgöwer F
    Bull Math Biol; 2012 Nov; 74(11):2692-732. PubMed ID: 23086287
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A general mathematical framework to model generation structure in a population of asynchronously dividing cells.
    León K; Faro J; Carneiro J
    J Theor Biol; 2004 Aug; 229(4):455-76. PubMed ID: 15246784
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Population balance approach to modeling hairy root growth.
    Han B; Linden JC; Gujarathi NP; Wickramasinghe SR
    Biotechnol Prog; 2004; 20(3):872-9. PubMed ID: 15176894
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dynamical crossover in a stochastic model of cell fate decision.
    Yamaguchi H; Kawaguchi K; Sagawa T
    Phys Rev E; 2017 Jul; 96(1-1):012401. PubMed ID: 29347197
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inferring the effect of therapy on tumors showing stochastic Gompertzian growth.
    Albano G; Giorno V; Román-Román P; Torres-Ruiz F
    J Theor Biol; 2011 May; 276(1):67-77. PubMed ID: 21295592
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Connection between stochastic and deterministic modelling of microbial growth.
    Kutalik Z; Razaz M; Baranyi J
    J Theor Biol; 2005 Jan; 232(2):285-99. PubMed ID: 15530497
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A simulation model for stem cells differentiation into specialized cells of non-connective tissues.
    Pisu M; Concas A; Fadda S; Cincotti A; Cao G
    Comput Biol Chem; 2008 Oct; 32(5):338-44. PubMed ID: 18667361
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Proliferation and competition in discrete biological systems.
    Louzoun Y; Solomon S; Atlan H; Cohen IR
    Bull Math Biol; 2003 May; 65(3):375-96. PubMed ID: 12749530
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stochastic and deterministic simulations of heterogeneous cell population dynamics.
    Mantzaris NV
    J Theor Biol; 2006 Aug; 241(3):690-706. PubMed ID: 16487980
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The role of transient dynamics in stochastic population growth for nine perennial plants.
    Ellis MM; Crone EE
    Ecology; 2013 Aug; 94(8):1681-6. PubMed ID: 24015512
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A stochastic model for early HIV-1 population dynamics.
    Tuckwell HC; Le Corfec E
    J Theor Biol; 1998 Dec; 195(4):451-63. PubMed ID: 9837702
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A statistical approach to quasi-extinction forecasting.
    Holmes EE; Sabo JL; Viscido SV; Fagan WF
    Ecol Lett; 2007 Dec; 10(12):1182-98. PubMed ID: 17803676
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stochastic modeling of the transmission of respiratory syncytial virus (RSV) in the region of Valencia, Spain.
    Arenas AJ; González-Parra G; Moraño JA
    Biosystems; 2009 Jun; 96(3):206-12. PubMed ID: 19758545
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Efficient computation of stochastic cell-size transient dynamics.
    Nieto-Acuna CA; Vargas-Garcia CA; Singh A; Pedraza JM
    BMC Bioinformatics; 2019 Dec; 20(Suppl 23):647. PubMed ID: 31881826
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stochastic modeling of cellular networks.
    Stewart-Ornstein J; El-Samad H
    Methods Cell Biol; 2012; 110():111-37. PubMed ID: 22482947
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Insights into the mechanisms of thymus involution and regeneration by modeling the glucocorticoid-induced perturbation of thymocyte populations dynamics.
    Moleriu RD; Zaharie D; Moatar-Moleriu LC; Gruia AT; Mic AA; Mic FA
    J Theor Biol; 2014 May; 348():80-99. PubMed ID: 24486233
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stochastic juvenile--adult models with application to a green tree frog population.
    Ackleh AS; Deng K; Huang Q
    J Biol Dyn; 2011 Jan; 5(1):64-83. PubMed ID: 22877230
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mathematical conservation ecology: a one-predator-two-prey system as case study.
    Grasman J; van den Bosch F; van Herwaarden OA
    Bull Math Biol; 2001 Mar; 63(2):259-69. PubMed ID: 11276526
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.