BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 24245847)

  • 1. Exploring the dynamic behaviors and transport properties of gas molecules in a transmembrane cyclic peptide nanotube.
    Li R; Fan J; Li H; Yan X; Yu Y
    J Phys Chem B; 2013 Dec; 117(48):14916-27. PubMed ID: 24245847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Different transport behaviors of NH4 (+) and NH3 in transmembrane cyclic peptide nanotubes.
    Zhang M; Fan J; Xu J; Weng P; Lin H
    J Mol Model; 2016 Oct; 22(10):233. PubMed ID: 27600817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic behaviors and transport properties of ethanol molecules in transmembrane cyclic peptide nanotubes.
    Li R; Fan J; Li H; Yan X; Yu Y
    J Chem Phys; 2015 Jul; 143(1):015101. PubMed ID: 26156492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport properties of simple organic molecules in a transmembrane cyclic peptide nanotube.
    Xu J; Fan JF; Zhang MM; Weng PP; Lin HF
    J Mol Model; 2016 May; 22(5):107. PubMed ID: 27083567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical studies on the transport mechanism of 5-fluorouracil through cyclic peptide based nanotubes.
    Vijayaraj R; Van Damme S; Bultinck P; Subramanian V
    Phys Chem Chem Phys; 2013 Jan; 15(4):1260-70. PubMed ID: 23229174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical design of the cyclic lipopeptide nanotube as a molecular channel in the lipid bilayer, molecular dynamics and quantum mechanics approach.
    Khavani M; Izadyar M; Housaindokht MR
    Phys Chem Chem Phys; 2015 Oct; 17(38):25536-49. PubMed ID: 26366633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A molecular dynamics investigation on transporting mechanism of glucose through a cyclic peptide nanotube.
    Joozdani FA; Taghdir M
    J Biomol Struct Dyn; 2021 Apr; 39(6):2230-2241. PubMed ID: 32249695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics simulation for the structure of the water chain in a transmembrane peptide nanotube.
    Liu J; Fan J; Tang M; Zhou W
    J Phys Chem A; 2010 Feb; 114(6):2376-83. PubMed ID: 20099797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of the diameter of cyclic peptide nanotube on its chirality discrimination.
    Farrokhpour H; Mansouri A; Rajabi AR; Najafi Chermahini A
    J Biomol Struct Dyn; 2019 Feb; 37(3):691-701. PubMed ID: 29393002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport behavior of a single Ca(2+), K(+), and Na(+) in a water-filled transmembrane cyclic peptide nanotube.
    Yan X; Fan J; Yu Y; Xu J; Zhang M
    J Chem Inf Model; 2015 May; 55(5):998-1011. PubMed ID: 25894098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic behavior and selective adsorption of a methanol/water mixture inside a cyclic peptide nanotube.
    Si X; Fan J; Xu J; Zhao X; Zhang L; Qu M
    J Mol Model; 2018 Jun; 24(7):184. PubMed ID: 29959542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Steered molecular dynamics studies of the potential of mean force of a Na+ or K+ ion in a cyclic peptide nanotube.
    Hwang H; Schatz GC; Ratner MA
    J Phys Chem B; 2006 Dec; 110(51):26448-60. PubMed ID: 17181305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study on the Assembly Mechanisms and Transport Properties of Transmembrane End-Charged Cyclic Peptide Nanotubes.
    Gong T; Fan J
    J Chem Inf Model; 2021 Jun; 61(6):2754-2765. PubMed ID: 34128668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A combined molecular dynamic and quantum mechanic study of the solvent and guest molecule effect on the stability and length of heterocyclic peptide nanotubes.
    Izadyar M; Khavani M; Housaindokht MR
    Phys Chem Chem Phys; 2015 May; 17(17):11382-91. PubMed ID: 25848975
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glucose derivatives substitution and cyclic peptide diameter effects on the stability of the self-assembled cyclic peptide nanotubes; a joint QM/MD study.
    Khavani M; Izadyar M; Housaindokht MR
    J Mol Graph Model; 2017 Jan; 71():28-39. PubMed ID: 27837688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tilt behavior of an octa-peptide nanotube in POPE and affects on the transport characteristics of channel water.
    Yu Y; Fan J; Yan X; Xu J; Zhang M
    J Phys Chem A; 2015 May; 119(20):4723-34. PubMed ID: 25909228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics and umbrella sampling study of stabilizing factors in cyclic peptide-based nanotubes.
    Vijayaraj R; Van Damme S; Bultinck P; Subramanian V
    J Phys Chem B; 2012 Aug; 116(33):9922-33. PubMed ID: 22804626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MD Simulations on the Transport Behaviors of Mixed Na
    Zhang L; Fan J; Qu M
    J Chem Inf Model; 2019 Jan; 59(1):170-180. PubMed ID: 30474974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics study of Na⁺ transportation in a cyclic peptide nanotube and its influences on water behaviors in the tube.
    Song X; Fan J; Liu D; Li H; Li R
    J Mol Model; 2013 Oct; 19(10):4271-82. PubMed ID: 23900854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Separation of chloroform from a dilute solution using a cyclic peptide nanotube: A molecular dynamics study.
    Zhao X; Fan JF; Si XL; Zhang LL; Qu MN
    J Mol Graph Model; 2018 Aug; 83():74-83. PubMed ID: 29778743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.