These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 24245847)

  • 21. In silico study of amphiphilic nanotubes based on cyclic peptides in polar and non-polar solvent.
    Vijayakumar V; Vijayaraj R; Peters GH
    J Mol Model; 2016 Nov; 22(11):264. PubMed ID: 27734210
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The dynamic behavior of ethanol and water mixtures inside an Au nanotube molecule filter.
    Wang YC; Ju SP
    Phys Chem Chem Phys; 2011 Jan; 13(4):1323-31. PubMed ID: 21103485
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adsorption of water molecules inside a Au nanotube: a molecular dynamics study.
    Weng MH; Lee WJ; Ju SP; Chao CH; Hsieh NK; Chang JG; Chen HL
    J Chem Phys; 2008 May; 128(17):174705. PubMed ID: 18465934
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exploring gas permeability of cellular membranes and membrane channels with molecular dynamics.
    Wang Y; Cohen J; Boron WF; Schulten K; Tajkhorshid E
    J Struct Biol; 2007 Mar; 157(3):534-44. PubMed ID: 17306562
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dependences of water permeation through cyclic octa-peptide nanotubes on channel length and membrane thickness.
    Liu J; Fan J; Cen M; Song X; Liu D; Zhou W; Liu Z; Yan J
    J Chem Inf Model; 2012 Aug; 52(8):2132-8. PubMed ID: 22834559
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Water diffusion behaviors and transportation properties in transmembrane cyclic hexa-, octa- and decapeptide nanotubes.
    Liu J; Fan J; Tang M; Cen M; Yan J; Liu Z; Zhou W
    J Phys Chem B; 2010 Sep; 114(38):12183-92. PubMed ID: 20809577
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Coarse-grained molecular dynamics study of cyclic peptide nanotube insertion into a lipid bilayer.
    Hwang H
    J Phys Chem A; 2009 Apr; 113(16):4780-7. PubMed ID: 19035669
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Studies on the structure and stability of cyclic peptide based nanotubes using oligomeric approach: a computational chemistry investigation.
    Vijayaraj R; Sundar Raman S; Mahesh Kumar R; Subramanian V
    J Phys Chem B; 2010 Dec; 114(49):16574-83. PubMed ID: 21087024
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydrogen bond network in the hydration layer of the water confined in nanotubes increasing the dielectric constant parallel along the nanotube axis.
    Qi W; Zhao H
    J Chem Phys; 2015 Sep; 143(11):114708. PubMed ID: 26395729
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stability and growth mechanism of self-assembling putative antifreeze cyclic peptides.
    Brotzakis ZF; Gehre M; Voets IK; Bolhuis PG
    Phys Chem Chem Phys; 2017 Jul; 19(29):19032-19042. PubMed ID: 28702528
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kinetics of water filling the hydrophobic channels of narrow carbon nanotubes studied by molecular dynamics simulations.
    Wu K; Zhou B; Xiu P; Qi W; Wan R; Fang H
    J Chem Phys; 2010 Nov; 133(20):204702. PubMed ID: 21133447
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular insights on the cyclic peptide nanotube-mediated transportation of antitumor drug 5-fluorouracil.
    Liu H; Chen J; Shen Q; Fu W; Wu W
    Mol Pharm; 2010 Dec; 7(6):1985-94. PubMed ID: 20964368
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular dynamics study of a carbon nanotube binding reversible cyclic peptide.
    Chiu CC; Maher MC; Dieckmann GR; Nielsen SO
    ACS Nano; 2010 May; 4(5):2539-46. PubMed ID: 20423073
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Anisotropic dielectric relaxation of the water confined in nanotubes for terahertz spectroscopy studied by molecular dynamics simulations.
    Qi W; Chen J; Yang J; Lei X; Song B; Fang H
    J Phys Chem B; 2013 Jul; 117(26):7967-71. PubMed ID: 23751101
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular Dynamics Simulation Study of the Protonation State Dependence of Glutamic Acid Transport through a Cyclic Peptide Nanotube.
    Kim N; Lee JH; Song Y; Lee JH; Schatz GC; Hwang H
    J Phys Chem B; 2023 Jul; 127(27):6061-6072. PubMed ID: 37369069
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A first principles molecular dynamics study of excess electron and lithium atom solvation in water-ammonia mixed clusters: structural, spectral, and dynamical behaviors of [(H2O)5NH3]- and Li(H2O)5NH3 at finite temperature.
    Pratihar S; Chandra A
    J Chem Phys; 2011 Jan; 134(3):034302. PubMed ID: 21261348
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular Dynamics Simulations on the Behaviors of Hydrophilic/Hydrophobic Cyclic Peptide Nanotubes at the Water/Hexane Interface.
    Lin H; Fan J; Weng P; Si X; Zhao X
    J Phys Chem A; 2017 Sep; 121(37):6863-6873. PubMed ID: 28836781
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Energetics of ion transport in a peptide nanotube.
    Dehez F; Tarek M; Chipot C
    J Phys Chem B; 2007 Sep; 111(36):10633-5. PubMed ID: 17705530
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular Dynamics Simulations of Transmembrane Cyclic Peptide Nanotubes Using Classical Force Fields, Hydrogen Mass Repartitioning, and Hydrogen Isotope Exchange Methods: A Critical Comparison.
    Conde D; Garrido PF; Calvelo M; Piñeiro Á; Garcia-Fandino R
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328578
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phase transition study of confined water molecules inside carbon nanotubes: hierarchical multiscale method from molecular dynamics simulation to ab initio calculation.
    Javadian S; Taghavi F; Yari F; Hashemianzadeh SM
    J Mol Graph Model; 2012 Sep; 38():40-9. PubMed ID: 23085156
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.