These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 2424599)
1. gamma-Aminobutyric acid (GABA) removal from the synaptic cleft: a postsynaptic event? Cupello A; Hydén H Cell Mol Neurobiol; 1986 Mar; 6(1):1-16. PubMed ID: 2424599 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of the electrophysiological consequences of GABA removal from the synaptic cleft by Na+ ion transport-coupled neuronal uptake. Cupello A; Hydén H Brain Res; 1985 Dec; 358(1-2):364-6. PubMed ID: 2416389 [TBL] [Abstract][Full Text] [Related]
3. Asymmetric diffusion into the postsynaptic neuron: an extremely efficient mechanism for removing excess GABA from synaptic clefts on the Deiters' neurone plasma membrane. Hyden H; Cupello A; Palm A Neurochem Res; 1986 May; 11(5):695-706. PubMed ID: 3724968 [TBL] [Abstract][Full Text] [Related]
4. GABAergic and glutamatergic terminals differentially influence the organization of GABAergic synapses in rat cerebellar granule cells in vitro. Studler B; Fritschy JM; Brünig I Neuroscience; 2002; 114(1):123-33. PubMed ID: 12207960 [TBL] [Abstract][Full Text] [Related]
5. Pentobarbital and synaptic high-affinity receptive sites for gamma-aminobutyric acid. Peck EJ; Miller AL; Lester BR Brain Res Bull; 1976; 1(6):595-7. PubMed ID: 191155 [TBL] [Abstract][Full Text] [Related]
6. Serotonin drives a novel GABAergic synaptic current recorded in rat cerebellar purkinje cells: a Lugaro cell to Purkinje cell synapse. Dean I; Robertson SJ; Edwards FA J Neurosci; 2003 Jun; 23(11):4457-69. PubMed ID: 12805286 [TBL] [Abstract][Full Text] [Related]
7. A calculation method for evaluating the time course of GABA removal from a synaptic cleft by presynaptic uptake systems. Cupello A; Hyden H Brain Res; 1985 Sep; 342(1):176-8. PubMed ID: 4041809 [TBL] [Abstract][Full Text] [Related]
8. Kinetic and pharmacologic characterization of gamma-aminobutyric acid receptive sites from mammalian brain. Lester BR; Peck EJ Brain Res; 1979 Jan; 161(1):79-97. PubMed ID: 215278 [TBL] [Abstract][Full Text] [Related]
9. Chloride permeation across the Deiters' neuron plasma membrane: activation by GABA on the membrane cytoplasmic side. Hydén H; Cupello A; Rapallino MV Neuroscience; 1999; 89(4):1391-9. PubMed ID: 10362323 [TBL] [Abstract][Full Text] [Related]
10. Blockade of the membranal GABA transporter potentiates GABAergic responses evoked in pyramidal cells by mossy fiber activation after seizures. Vivar C; Gutiérrez R Hippocampus; 2005; 15(3):281-4. PubMed ID: 15668946 [TBL] [Abstract][Full Text] [Related]
11. Presynaptic source of quantal size variability at GABAergic synapses in rat hippocampal neurons in culture. Barberis A; Petrini EM; Cherubini E Eur J Neurosci; 2004 Oct; 20(7):1803-10. PubMed ID: 15380001 [TBL] [Abstract][Full Text] [Related]
12. Despite GABAergic neurotransmission, GABAergic innervation does not compensate for the defect in glycine receptor postsynaptic aggregation in spastic mice. Muller E; Le Corronc H; Scain AL; Triller A; Legendre P Eur J Neurosci; 2008 May; 27(10):2529-41. PubMed ID: 18445051 [TBL] [Abstract][Full Text] [Related]
13. Micromethods for the study of GABA biochemistry and function at single GABA acceptive membranes. Hydén H; Rapallino MV; Cupello A Int J Neurosci; 1987 Nov; 37(1-2):1-18. PubMed ID: 3679687 [TBL] [Abstract][Full Text] [Related]
14. Multiple Forms of Endocannabinoid and Endovanilloid Signaling Regulate the Tonic Control of GABA Release. Lee SH; Ledri M; Tóth B; Marchionni I; Henstridge CM; Dudok B; Kenesei K; Barna L; Szabó SI; Renkecz T; Oberoi M; Watanabe M; Limoli CL; Horvai G; Soltesz I; Katona I J Neurosci; 2015 Jul; 35(27):10039-57. PubMed ID: 26157003 [TBL] [Abstract][Full Text] [Related]
15. Activation of postsynaptic GABAB receptors modulates the bursting pattern and synaptic activity of olfactory bulb juxtaglomerular neurons. Karpuk N; Hayar A J Neurophysiol; 2008 Jan; 99(1):308-19. PubMed ID: 18032562 [TBL] [Abstract][Full Text] [Related]
16. Slow IPSC kinetics, low levels of alpha1 subunit expression and paired-pulse depression are distinct properties of neonatal inhibitory GABAergic synaptic connections in the mouse superior colliculus. Jüttner R; Meier J; Grantyn R Eur J Neurosci; 2001 Jun; 13(11):2088-98. PubMed ID: 11422449 [TBL] [Abstract][Full Text] [Related]
17. Triethyllead inhibits gamma-aminobutyric acid binding to uptake sites in synaptosomal membranes. Seidman BC; Olsen RW; Verity MA J Neurochem; 1987 Aug; 49(2):415-20. PubMed ID: 3037027 [TBL] [Abstract][Full Text] [Related]
18. Intact sorting, targeting, and clustering of gamma-aminobutyric acid A receptor subtypes in hippocampal neurons in vitro. Brünig I; Scotti E; Sidler C; Fritschy JM J Comp Neurol; 2002 Jan; 443(1):43-55. PubMed ID: 11793346 [TBL] [Abstract][Full Text] [Related]
19. Release probability-dependent scaling of the postsynaptic responses at single hippocampal GABAergic synapses. Biró AA; Holderith NB; Nusser Z J Neurosci; 2006 Nov; 26(48):12487-96. PubMed ID: 17135411 [TBL] [Abstract][Full Text] [Related]
20. GABA metabolism and transport: effects on synaptic efficacy. Roth FC; Draguhn A Neural Plast; 2012; 2012():805830. PubMed ID: 22530158 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]