BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 2424599)

  • 1. gamma-Aminobutyric acid (GABA) removal from the synaptic cleft: a postsynaptic event?
    Cupello A; Hydén H
    Cell Mol Neurobiol; 1986 Mar; 6(1):1-16. PubMed ID: 2424599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of the electrophysiological consequences of GABA removal from the synaptic cleft by Na+ ion transport-coupled neuronal uptake.
    Cupello A; Hydén H
    Brain Res; 1985 Dec; 358(1-2):364-6. PubMed ID: 2416389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Asymmetric diffusion into the postsynaptic neuron: an extremely efficient mechanism for removing excess GABA from synaptic clefts on the Deiters' neurone plasma membrane.
    Hyden H; Cupello A; Palm A
    Neurochem Res; 1986 May; 11(5):695-706. PubMed ID: 3724968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GABAergic and glutamatergic terminals differentially influence the organization of GABAergic synapses in rat cerebellar granule cells in vitro.
    Studler B; Fritschy JM; Brünig I
    Neuroscience; 2002; 114(1):123-33. PubMed ID: 12207960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pentobarbital and synaptic high-affinity receptive sites for gamma-aminobutyric acid.
    Peck EJ; Miller AL; Lester BR
    Brain Res Bull; 1976; 1(6):595-7. PubMed ID: 191155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A calculation method for evaluating the time course of GABA removal from a synaptic cleft by presynaptic uptake systems.
    Cupello A; Hyden H
    Brain Res; 1985 Sep; 342(1):176-8. PubMed ID: 4041809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Serotonin drives a novel GABAergic synaptic current recorded in rat cerebellar purkinje cells: a Lugaro cell to Purkinje cell synapse.
    Dean I; Robertson SJ; Edwards FA
    J Neurosci; 2003 Jun; 23(11):4457-69. PubMed ID: 12805286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic and pharmacologic characterization of gamma-aminobutyric acid receptive sites from mammalian brain.
    Lester BR; Peck EJ
    Brain Res; 1979 Jan; 161(1):79-97. PubMed ID: 215278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chloride permeation across the Deiters' neuron plasma membrane: activation by GABA on the membrane cytoplasmic side.
    Hydén H; Cupello A; Rapallino MV
    Neuroscience; 1999; 89(4):1391-9. PubMed ID: 10362323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Blockade of the membranal GABA transporter potentiates GABAergic responses evoked in pyramidal cells by mossy fiber activation after seizures.
    Vivar C; Gutiérrez R
    Hippocampus; 2005; 15(3):281-4. PubMed ID: 15668946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Presynaptic source of quantal size variability at GABAergic synapses in rat hippocampal neurons in culture.
    Barberis A; Petrini EM; Cherubini E
    Eur J Neurosci; 2004 Oct; 20(7):1803-10. PubMed ID: 15380001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Despite GABAergic neurotransmission, GABAergic innervation does not compensate for the defect in glycine receptor postsynaptic aggregation in spastic mice.
    Muller E; Le Corronc H; Scain AL; Triller A; Legendre P
    Eur J Neurosci; 2008 May; 27(10):2529-41. PubMed ID: 18445051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micromethods for the study of GABA biochemistry and function at single GABA acceptive membranes.
    Hydén H; Rapallino MV; Cupello A
    Int J Neurosci; 1987 Nov; 37(1-2):1-18. PubMed ID: 3679687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Slow IPSC kinetics, low levels of alpha1 subunit expression and paired-pulse depression are distinct properties of neonatal inhibitory GABAergic synaptic connections in the mouse superior colliculus.
    Jüttner R; Meier J; Grantyn R
    Eur J Neurosci; 2001 Jun; 13(11):2088-98. PubMed ID: 11422449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Triethyllead inhibits gamma-aminobutyric acid binding to uptake sites in synaptosomal membranes.
    Seidman BC; Olsen RW; Verity MA
    J Neurochem; 1987 Aug; 49(2):415-20. PubMed ID: 3037027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Release probability-dependent scaling of the postsynaptic responses at single hippocampal GABAergic synapses.
    Biró AA; Holderith NB; Nusser Z
    J Neurosci; 2006 Nov; 26(48):12487-96. PubMed ID: 17135411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intact sorting, targeting, and clustering of gamma-aminobutyric acid A receptor subtypes in hippocampal neurons in vitro.
    Brünig I; Scotti E; Sidler C; Fritschy JM
    J Comp Neurol; 2002 Jan; 443(1):43-55. PubMed ID: 11793346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GABA(C) rho(1) subunits form functional receptors but not functional synapses in hippocampal neurons.
    Cheng Q; Burkat PM; Kulli JC; Yang J
    J Neurophysiol; 2001 Nov; 86(5):2605-15. PubMed ID: 11698546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unique pH dynamics in GABAergic synaptic vesicles illuminates the mechanism and kinetics of GABA loading.
    Egashira Y; Takase M; Watanabe S; Ishida J; Fukamizu A; Kaneko R; Yanagawa Y; Takamori S
    Proc Natl Acad Sci U S A; 2016 Sep; 113(38):10702-7. PubMed ID: 27601664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of propofol on GABAergic and glutamatergic transmission in isolated hippocampal single nerve-synapse preparations.
    Wakita M; Kotani N; Nonaka K; Shin MC; Akaike N
    Eur J Pharmacol; 2013 Oct; 718(1-3):63-73. PubMed ID: 24051267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.