These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 24246128)

  • 1. Electron beam induced formation of tungsten sub-oxide nanorods from flame-formed fragments.
    Merchan-Merchan W; Farahani MF; Moorhead-Rosenberg Z
    Micron; 2014 Feb; 57():23-30. PubMed ID: 24246128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth and structure analysis of tungsten oxide nanorods using environmental TEM.
    Tokunaga T; Kawamoto T; Tanaka K; Nakamura N; Hayashi Y; Sasaki K; Kuroda K; Yamamoto T
    Nanoscale Res Lett; 2012 Jan; 7(1):85. PubMed ID: 22277084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High rate flame synthesis of highly crystalline iron oxide nanorods.
    Merchan-Merchan W; Saveliev AV; Taylor AM
    Nanotechnology; 2008 Mar; 19(12):125605. PubMed ID: 21817737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth of tungsten oxide nanorods with carbon caps.
    Kichambare P; Hii KF; Vallance RR; Sadanadan B; Rao AM; Javed K; Menguc MP
    J Nanosci Nanotechnol; 2006 Feb; 6(2):536-40. PubMed ID: 16573057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis, characterization, and hierarchical organization of tungsten oxide nanorods: spreading driven by Marangoni flow.
    Yella A; Tahir MN; Meuer S; Zentel R; Berger R; Panthöfer M; Tremel W
    J Am Chem Soc; 2009 Dec; 131(48):17566-75. PubMed ID: 19950992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined flame and solution synthesis of nanoscale tungsten-oxide and zinc/tin-oxide heterostructures.
    Dong Z; Huo D; Kear BH; Tse SD
    Nanoscale; 2015 Dec; 7(48):20510-20. PubMed ID: 26585764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accelerated electron beam induced breakdown of commercial WO3 into nanorods in the presence of triethylamine.
    Dawson G; Zhou W; Blackley R
    Phys Chem Chem Phys; 2011 Dec; 13(47):20923-6. PubMed ID: 22030615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Patterned growth of tungsten oxide and tungsten oxynitride nanorods from Au-coated W foil.
    Xu F; Fahmi A; Zhao Y; Xia Y; Zhu Y
    Nanoscale; 2012 Nov; 4(22):7031-7. PubMed ID: 23044698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of processing parameters on the synthesis of tungsten oxide nanomaterials by a modified plasma arc gas condensation technique.
    Su CY; Lin HC; Yang TK; Lin CK
    J Nanosci Nanotechnol; 2010 Aug; 10(8):5461-6. PubMed ID: 21125919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-dimensional metallic tungsten nanowire network fabricated by electron-beam-induced deposition.
    Chen CL; Arakawa K; Mori H
    Nanotechnology; 2010 Jul; 21(28):285304. PubMed ID: 20562484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphology Control of Tungsten Oxide Thin Films in an Aerosol Flame Deposition System.
    Ding JR; Yoon SH; Kim KS
    J Nanosci Nanotechnol; 2017 Apr; 17(4):2780-783. PubMed ID: 29667806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spontaneous self-assembly of cerium oxide nanoparticles to nanorods through supraaggregate formation.
    Kuiry SC; Patil SD; Deshpande S; Seal S
    J Phys Chem B; 2005 Apr; 109(15):6936-9. PubMed ID: 16851784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of the electron beam on the thermal stability of gold nanorods studied by environmental transmission electron microscopy.
    Albrecht W; van de Glind A; Yoshida H; Isozaki Y; Imhof A; van Blaaderen A; de Jongh PE; de Jong KP; Zečević J; Takeda S
    Ultramicroscopy; 2018 Oct; 193():97-103. PubMed ID: 29960259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth and characterization of stoichiometric tungsten oxide nanorods by thermal evaporation and subsequent annealing.
    Senthil K; Yong K
    Nanotechnology; 2007 Oct; 18(39):395604. PubMed ID: 21730424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlling electron beam-induced structure modifications and cation exchange in cadmium sulfide-copper sulfide heterostructured nanorods.
    Zheng H; Sadtler B; Habenicht C; Freitag B; Alivisatos AP; Kisielowski C
    Ultramicroscopy; 2013 Nov; 134():207-13. PubMed ID: 23830376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth of tungsten nanodendrites on SiO2 substrate using electron-beam-induced deposition.
    Xie G; Song M; Mitsuishi K; Furuya K
    J Nanosci Nanotechnol; 2005 Apr; 5(4):615-9. PubMed ID: 16004128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrothermally formed functional niobium oxide doped tungsten nanorods.
    Yu J; Yuan L; Wen H; Shafiei M; Field MR; Liang J; Yang J; Liu ZF; Wlodarski W; Motta N; Li YX; Zhang G; Kalantar-Zadeh K; Lai PT
    Nanotechnology; 2013 Dec; 24(49):495501. PubMed ID: 24231755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polymer-assisted growth of molybdenum oxide whiskers via a sonochemical process.
    Krishnan CV; Chen J; Burger C; Chu B
    J Phys Chem B; 2006 Oct; 110(41):20182-8. PubMed ID: 17034194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sonochemical fabrication and characterization of stibnite nanorods.
    Wang H; Lu YN; Zhu JJ; Chen HY
    Inorg Chem; 2003 Oct; 42(20):6404-11. PubMed ID: 14514316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron beam-induced thickening of the protective oxide layer around Fe nanoparticles.
    Wang CM; Baer DR; Amonette JE; Engelhard MH; Antony JJ; Qiang Y
    Ultramicroscopy; 2007 Dec; 108(1):43-51. PubMed ID: 17448600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.