BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 24246380)

  • 1. Feruloyl-CoA 6'-Hydroxylase1-dependent coumarins mediate iron acquisition from alkaline substrates in Arabidopsis.
    Schmid NB; Giehl RF; Döll S; Mock HP; Strehmel N; Scheel D; Kong X; Hider RC; von Wirén N
    Plant Physiol; 2014 Jan; 164(1):160-72. PubMed ID: 24246380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scopoletin is biosynthesized via ortho-hydroxylation of feruloyl CoA by a 2-oxoglutarate-dependent dioxygenase in Arabidopsis thaliana.
    Kai K; Mizutani M; Kawamura N; Yamamoto R; Tamai M; Yamaguchi H; Sakata K; Shimizu B
    Plant J; 2008 Sep; 55(6):989-99. PubMed ID: 18547395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scopoletin 8-Hydroxylase-Mediated Fraxetin Production Is Crucial for Iron Mobilization.
    Tsai HH; Rodríguez-Celma J; Lan P; Wu YC; Vélez-Bermúdez IC; Schmidt W
    Plant Physiol; 2018 May; 177(1):194-207. PubMed ID: 29559590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scopoletin 8-hydroxylase: a novel enzyme involved in coumarin biosynthesis and iron-deficiency responses in Arabidopsis.
    Siwinska J; Siatkowska K; Olry A; Grosjean J; Hehn A; Bourgaud F; Meharg AA; Carey M; Lojkowska E; Ihnatowicz A
    J Exp Bot; 2018 Mar; 69(7):1735-1748. PubMed ID: 29361149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A major role of coumarin-dependent ferric iron reduction in strategy I-type iron acquisition in Arabidopsis.
    Paffrath V; Tandron Moya YA; Weber G; von Wirén N; Giehl RFH
    Plant Cell; 2024 Feb; 36(3):642-664. PubMed ID: 38016103
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health.
    Stringlis IA; Yu K; Feussner K; de Jonge R; Van Bentum S; Van Verk MC; Berendsen RL; Bakker PAHM; Feussner I; Pieterse CMJ
    Proc Natl Acad Sci U S A; 2018 May; 115(22):E5213-E5222. PubMed ID: 29686086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PDR9 allelic variation and MYB63 modulate nutrient-dependent coumarin homeostasis in Arabidopsis.
    DeLoose M; Cho H; Bouain N; Choi I; Prom-U-Thai C; Shahzad Z; Zheng L; Rouached H
    Plant J; 2024 Mar; 117(6):1716-1727. PubMed ID: 38361338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosynthesis of redox-active metabolites in response to iron deficiency in plants.
    Rajniak J; Giehl RFH; Chang E; Murgia I; von Wirén N; Sattely ES
    Nat Chem Biol; 2018 May; 14(5):442-450. PubMed ID: 29581584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of the ABCG37 transporter in secretion of scopoletin and derivatives by Arabidopsis roots in response to iron deficiency.
    Fourcroy P; Sisó-Terraza P; Sudre D; Savirón M; Reyt G; Gaymard F; Abadía A; Abadia J; Álvarez-Fernández A; Briat JF
    New Phytol; 2014 Jan; 201(1):155-167. PubMed ID: 24015802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The essential role of coumarin secretion for Fe acquisition from alkaline soil.
    Clemens S; Weber M
    Plant Signal Behav; 2016; 11(2):e1114197. PubMed ID: 26618918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural Insights into Substrate Specificity of Feruloyl-CoA 6'-Hydroxylase from Arabidopsis thaliana.
    Sun X; Zhou D; Kandavelu P; Zhang H; Yuan Q; Wang BC; Rose J; Yan Y
    Sci Rep; 2015 May; 5():10355. PubMed ID: 25993561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolome analysis of Arabidopsis thaliana roots identifies a key metabolic pathway for iron acquisition.
    Schmidt H; Günther C; Weber M; Spörlein C; Loscher S; Böttcher C; Schobert R; Clemens S
    PLoS One; 2014; 9(7):e102444. PubMed ID: 25058345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plant-derived coumarins shape the composition of an
    Voges MJEEE; Bai Y; Schulze-Lefert P; Sattely ES
    Proc Natl Acad Sci U S A; 2019 Jun; 116(25):12558-12565. PubMed ID: 31152139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Posttranslational regulation of the iron deficiency basic helix-loop-helix transcription factor FIT is affected by iron and nitric oxide.
    Meiser J; Lingam S; Bauer P
    Plant Physiol; 2011 Dec; 157(4):2154-66. PubMed ID: 21972265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systemic Regulation of Iron Acquisition by Arabidopsis in Environments with Heterogeneous Iron Distributions.
    Tabata R; Kamiya T; Imoto S; Tamura H; Ikuta K; Tabata M; Hirayama T; Tsukagoshi H; Tanoi K; Suzuki T; Hachiya T; Sakakibara H
    Plant Cell Physiol; 2022 Jun; 63(6):842-854. PubMed ID: 35445268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. COSY catalyses trans-cis isomerization and lactonization in the biosynthesis of coumarins.
    Vanholme R; Sundin L; Seetso KC; Kim H; Liu X; Li J; De Meester B; Hoengenaert L; Goeminne G; Morreel K; Haustraete J; Tsai HH; Schmidt W; Vanholme B; Ralph J; Boerjan W
    Nat Plants; 2019 Oct; 5(10):1066-1075. PubMed ID: 31501530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Putrescine Alleviates Iron Deficiency via NO-Dependent Reutilization of Root Cell-Wall Fe in Arabidopsis.
    Zhu XF; Wang B; Song WF; Zheng SJ; Shen RF
    Plant Physiol; 2016 Jan; 170(1):558-67. PubMed ID: 26578707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A soil bacterium regulates plant acquisition of iron via deficiency-inducible mechanisms.
    Zhang H; Sun Y; Xie X; Kim MS; Dowd SE; Paré PW
    Plant J; 2009 May; 58(4):568-77. PubMed ID: 19154225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A 2-oxoglutarate-dependent dioxygenase from Ruta graveolens L. exhibits p-coumaroyl CoA 2'-hydroxylase activity (C2'H): a missing step in the synthesis of umbelliferone in plants.
    Vialart G; Hehn A; Olry A; Ito K; Krieger C; Larbat R; Paris C; Shimizu B; Sugimoto Y; Mizutani M; Bourgaud F
    Plant J; 2012 May; 70(3):460-70. PubMed ID: 22168819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential expression and regulation of iron-regulated metal transporters in Arabidopsis halleri and Arabidopsis thaliana--the role in zinc tolerance.
    Shanmugam V; Lo JC; Wu CL; Wang SL; Lai CC; Connolly EL; Huang JL; Yeh KC
    New Phytol; 2011 Apr; 190(1):125-137. PubMed ID: 21219335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.