BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 24246848)

  • 1. High dose bystander effects in spatially fractionated radiation therapy.
    Asur R; Butterworth KT; Penagaricano JA; Prise KM; Griffin RJ
    Cancer Lett; 2015 Jan; 356(1):52-7. PubMed ID: 24246848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatially fractionated radiation induces cytotoxicity and changes in gene expression in bystander and radiation adjacent murine carcinoma cells.
    Asur RS; Sharma S; Chang CW; Penagaricano J; Kommuru IM; Moros EG; Corry PM; Griffin RJ
    Radiat Res; 2012 Jun; 177(6):751-65. PubMed ID: 22559204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bystander Effects in Spatially Fractionated Radiation Therapy: From Molecule To Organism To Clinical Implications.
    Jenkins SV; Johnsrud AJ; Dings RPM; Griffin RJ
    Semin Radiat Oncol; 2024 Jul; 34(3):284-291. PubMed ID: 38880537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling responses to spatially fractionated radiation fields using preclinical image-guided radiotherapy.
    Butterworth KT; Ghita M; McMahon SJ; Mcgarry CK; Griffin RJ; Hounsell AR; Prise KM
    Br J Radiol; 2017 Jan; 90(1069):20160485. PubMed ID: 27557131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radiation-induced bystander signalling in cancer therapy.
    Prise KM; O'Sullivan JM
    Nat Rev Cancer; 2009 May; 9(5):351-60. PubMed ID: 19377507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigating spatial fractionation and radiation induced bystander effects: a mathematical modelling approach.
    Cahoon P; Giacometti V; Casey F; Russell E; McGarry C; Prise KM; McMahon SJ
    Phys Med Biol; 2021 Nov; 66(22):. PubMed ID: 34666318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of treatment planning approaches for spatially fractionated irradiation of deep tumors.
    Sheikh K; Hrinivich WT; Bell LA; Moore JA; Laub W; Viswanathan AN; Yan Y; McNutt TR; Meyer J
    J Appl Clin Med Phys; 2019 Jun; 20(6):125-133. PubMed ID: 31112629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-dose spatially-fractionated radiation (GRID): a new paradigm in the management of advanced cancers.
    Mohiuddin M; Fujita M; Regine WF; Megooni AS; Ibbott GS; Ahmed MM
    Int J Radiat Oncol Biol Phys; 1999 Oct; 45(3):721-7. PubMed ID: 10524428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From clinical observations of intensity-modulated radiotherapy to dedicated in vitro designs.
    Blockhuys S; Vanhoecke B; De Wagter C; Bracke M; De Neve W
    Mutat Res; 2010; 704(1-3):200-5. PubMed ID: 20178859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA damage responses following exposure to modulated radiation fields.
    Trainor C; Butterworth KT; McGarry CK; McMahon SJ; O'Sullivan JM; Hounsell AR; Prise KM
    PLoS One; 2012; 7(8):e43326. PubMed ID: 22912853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Which Modality of SFRT Should be Considered First for Bulky Tumor Radiation Therapy, GRID or LATTICE?
    Zhang H; Wu X
    Semin Radiat Oncol; 2024 Jul; 34(3):302-309. PubMed ID: 38880539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ionizing radiation-induced bystander effects, potential targets for modulation of radiotherapy.
    Rzeszowska-Wolny J; Przybyszewski WM; Widel M
    Eur J Pharmacol; 2009 Dec; 625(1-3):156-64. PubMed ID: 19835860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing GRID and Lattice Spatially Fractionated Radiation Therapy: Innovative Strategies for Radioresistant and Bulky Tumor Management.
    Ahmed MM; Wu X; Mohiuddin M; Perez NC; Zhang H; Amendola BE; Malachowska B; Mohiuddin M; Guha C
    Semin Radiat Oncol; 2024 Jul; 34(3):310-322. PubMed ID: 38880540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous beam geometry and intensity map optimization in intensity-modulated radiation therapy.
    Lee EK; Fox T; Crocker I
    Int J Radiat Oncol Biol Phys; 2006 Jan; 64(1):301-20. PubMed ID: 16289912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of high-dose microbeam irradiation on tumor microvascular function and angiogenesis.
    Fontanella AN; Boss MK; Hadsell M; Zhang J; Schroeder T; Berman KG; Dewhirst MW; Chang S; Palmer GM
    Radiat Res; 2015 Feb; 183(2):147-58. PubMed ID: 25574586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temporally feathered intensity-modulated radiation therapy: A planning technique to reduce normal tissue toxicity.
    López Alfonso JC; Parsai S; Joshi N; Godley A; Shah C; Koyfman SA; Caudell JJ; Fuller CD; Enderling H; Scott JG
    Med Phys; 2018 Jul; 45(7):3466-3474. PubMed ID: 29786861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Radiation-induced bystander effect: the important part of ionizing radiation response. Potential clinical implications].
    Wideł M; Przybyszewski W; Rzeszowska-Wolny J
    Postepy Hig Med Dosw (Online); 2009 Aug; 63():377-88. PubMed ID: 19724078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell survival and DNA damage in normal prostate cells irradiated out-of-field.
    Shields L; Vega-Carrascal I; Singleton S; Lyng FM; McClean B
    Radiat Res; 2014 Nov; 182(5):499-506. PubMed ID: 25361398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clinical aspects of spatially fractionated radiation therapy treatments.
    Grams MP; Deufel CL; Kavanaugh JA; Corbin KS; Ahmed SK; Haddock MG; Lester SC; Ma DJ; Petersen IA; Finley RR; Lang KG; Spreiter SS; Park SS; Owen D
    Phys Med; 2023 Jul; 111():102616. PubMed ID: 37311338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [IMRT combined to IGRT: increase of the irradiated volume. Consequences?].
    Lisbona A; Averbeck D; Supiot S; Delpon G; Ali D; Vinas F; Diana C; Murariu C; Lagrange JL
    Cancer Radiother; 2010 Oct; 14(6-7):563-70. PubMed ID: 20729117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.