These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 24247213)

  • 1. Lab on a chip and circulating tumor cells.
    Fan ZH; Beebe DJ
    Lab Chip; 2014 Jan; 14(1):12-3. PubMed ID: 24247213
    [No Abstract]   [Full Text] [Related]  

  • 2. Dual-wavelength fluorescent detection of particles on a novel microfluidic chip.
    Jiang H; Weng X; Li D
    Lab Chip; 2013 Mar; 13(5):843-50. PubMed ID: 23291857
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sustainable fabrication of micro-structured lab-on-a-chip.
    Oh HJ; Park JH; Lee SJ; Kim BI; Song YS; Youn JR
    Lab Chip; 2011 Dec; 11(23):3999-4005. PubMed ID: 21918762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advances in microfluidic materials, functions, integration, and applications.
    Nge PN; Rogers CI; Woolley AT
    Chem Rev; 2013 Apr; 113(4):2550-83. PubMed ID: 23410114
    [No Abstract]   [Full Text] [Related]  

  • 5. Microfluidic interface technology based on stereolithography for glass-based lab-on-a-chips.
    Han SI; Han KH
    Methods Mol Biol; 2013; 949():169-84. PubMed ID: 23329443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of biofunctionalized microfluidic structures by low-temperature wax bonding.
    Díaz-González M; Baldi A
    Anal Chem; 2012 Sep; 84(18):7838-44. PubMed ID: 22905798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization.
    Wang J; He Y; Xia H; Niu LG; Zhang R; Chen QD; Zhang YL; Li YF; Zeng SJ; Qin JH; Lin BC; Sun HB
    Lab Chip; 2010 Aug; 10(15):1993-6. PubMed ID: 20508876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA fragment-assisted microfluidic chip for capture and release of circulating tumor cells.
    Chen D; Wen J; Zeng S; Ma H
    Electrophoresis; 2019 Nov; 40(21):2845-2852. PubMed ID: 31267582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of reversibly adhesive fluidic devices using magnetism.
    Rafat M; Raad DR; Rowat AC; Auguste DT
    Lab Chip; 2009 Oct; 9(20):3016-9. PubMed ID: 19789760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A disposable planar peristaltic pump for lab-on-a-chip.
    Yobas L; Tang KC; Yong SE; Kye-Zheng Ong E
    Lab Chip; 2008 May; 8(5):660-2. PubMed ID: 18432333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optofluidic device for the quantification of circulating tumor cells in breast cancer.
    Pedrol E; Garcia-Algar M; Massons J; Nazarenus M; Guerrini L; Martínez J; Rodenas A; Fernandez-Carrascal A; Aguiló M; Estevez LG; Calvo I; Olano-Daza A; Garcia-Rico E; Díaz F; Alvarez-Puebla RA
    Sci Rep; 2017 Jun; 7(1):3677. PubMed ID: 28623262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells.
    Jang KJ; Suh KY
    Lab Chip; 2010 Jan; 10(1):36-42. PubMed ID: 20024048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication and validation of a multi-channel type microfluidic chip for electrokinetic streaming potential devices.
    Chun MS; Shim MS; Choi NW
    Lab Chip; 2006 Feb; 6(2):302-9. PubMed ID: 16450042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developing a non-fouling hybrid microfluidic device for applications in circulating tumour cell detections.
    Qin Y; Yang X; Zhang J; Cao X
    Colloids Surf B Biointerfaces; 2017 Mar; 151():39-46. PubMed ID: 27940168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrokinetic protein preconcentration using a simple glass/poly(dimethylsiloxane) microfluidic chip.
    Kim SM; Burns MA; Hasselbrink EF
    Anal Chem; 2006 Jul; 78(14):4779-85. PubMed ID: 16841895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrical fingerprinting, 3D profiling and detection of tumor cells with solid-state micropores.
    Asghar W; Wan Y; Ilyas A; Bachoo R; Kim YT; Iqbal SM
    Lab Chip; 2012 Jul; 12(13):2345-52. PubMed ID: 22549275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent developments in PDMS surface modification for microfluidic devices.
    Zhou J; Ellis AV; Voelcker NH
    Electrophoresis; 2010 Jan; 31(1):2-16. PubMed ID: 20039289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Patterning, integration and characterisation of polymer optical oxygen sensors for microfluidic devices.
    Nock V; Blaikie RJ; David T
    Lab Chip; 2008 Aug; 8(8):1300-7. PubMed ID: 18651072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A numerical and experimental study of acoustic micromixing in 3D microchannels for lab-on-a-chip devices.
    Catarino SO; Pinto VC; Sousa PJ; Lima R; Miranda JM; Minas G
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5660-5663. PubMed ID: 28269539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiscale variation-aware techniques for high-performance digital microfluidic lab-on-a-chip component placement.
    Liao C; Hu S
    IEEE Trans Nanobioscience; 2011 Mar; 10(1):51-8. PubMed ID: 21511570
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.