These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 24247239)
1. Molecular basis of ADP inhibition of vacuolar (V)-type ATPase/synthase. Kishikawa J; Nakanishi A; Furuike S; Tamakoshi M; Yokoyama K J Biol Chem; 2014 Jan; 289(1):403-12. PubMed ID: 24247239 [TBL] [Abstract][Full Text] [Related]
2. Basic properties of rotary dynamics of the molecular motor Enterococcus hirae V1-ATPase. Minagawa Y; Ueno H; Hara M; Ishizuka-Katsura Y; Ohsawa N; Terada T; Shirouzu M; Yokoyama S; Yamato I; Muneyuki E; Noji H; Murata T; Iino R J Biol Chem; 2013 Nov; 288(45):32700-32707. PubMed ID: 24089518 [TBL] [Abstract][Full Text] [Related]
3. An affinity change model to elucidate the rotation mechanism of V Arai S; Maruyama S; Shiroishi M; Yamato I; Murata T Biochem Biophys Res Commun; 2020 Dec; 533(4):1413-1418. PubMed ID: 33097182 [TBL] [Abstract][Full Text] [Related]
4. Crystal structure of A3B3 complex of V-ATPase from Thermus thermophilus. Maher MJ; Akimoto S; Iwata M; Nagata K; Hori Y; Yoshida M; Yokoyama S; Iwata S; Yokoyama K EMBO J; 2009 Dec; 28(23):3771-9. PubMed ID: 19893485 [TBL] [Abstract][Full Text] [Related]
5. V-ATPase of Thermus thermophilus is inactivated during ATP hydrolysis but can synthesize ATP. Yokoyama K; Muneyuki E; Amano T; Mizutani S; Yoshida M; Ishida M; Ohkuma S J Biol Chem; 1998 Aug; 273(32):20504-10. PubMed ID: 9685406 [TBL] [Abstract][Full Text] [Related]
7. Cryo EM structure of intact rotary H Nakanishi A; Kishikawa JI; Tamakoshi M; Mitsuoka K; Yokoyama K Nat Commun; 2018 Jan; 9(1):89. PubMed ID: 29311594 [TBL] [Abstract][Full Text] [Related]
8. Reconstitution in vitro of V1 complex of Thermus thermophilus V-ATPase revealed that ATP binding to the A subunit is crucial for V1 formation. Imamura H; Funamoto S; Yoshida M; Yokoyama K J Biol Chem; 2006 Dec; 281(50):38582-91. PubMed ID: 17050529 [TBL] [Abstract][Full Text] [Related]
9. Origin of asymmetry at the intersubunit interfaces of V1-ATPase from Thermus thermophilus. Nagamatsu Y; Takeda K; Kuranaga T; Numoto N; Miki K J Mol Biol; 2013 Aug; 425(15):2699-708. PubMed ID: 23639357 [TBL] [Abstract][Full Text] [Related]
10. Structure and conformational plasticity of the intact Zhou L; Sazanov LA Science; 2019 Aug; 365(6455):. PubMed ID: 31439765 [TBL] [Abstract][Full Text] [Related]
11. Mass spectrometry of intact V-type ATPases reveals bound lipids and the effects of nucleotide binding. Zhou M; Morgner N; Barrera NP; Politis A; Isaacson SC; Matak-Vinković D; Murata T; Bernal RA; Stock D; Robinson CV Science; 2011 Oct; 334(6054):380-385. PubMed ID: 22021858 [TBL] [Abstract][Full Text] [Related]
13. Resolving stepping rotation in Thermus thermophilus H(+)-ATPase/synthase with an essentially drag-free probe. Furuike S; Nakano M; Adachi K; Noji H; Kinosita K; Yokoyama K Nat Commun; 2011; 2():233. PubMed ID: 21407199 [TBL] [Abstract][Full Text] [Related]
14. Significance of the glutamate-139 residue of the V-type Na+-ATPase NtpK subunit in catalytic turnover linked with salt tolerance of Enterococcus hirae. Kawano-Kawada M; Takahashi H; Igarashi K; Murata T; Yamato I; Homma M; Kakinuma Y J Bacteriol; 2011 Jul; 193(14):3657-61. PubMed ID: 21602356 [TBL] [Abstract][Full Text] [Related]
15. Crystal structure of recombinant phosphoribosylpyrophosphate synthetase 2 from Thermus thermophilus HB27 complexed with ADP and sulfate ions. Timofeev VI; Sinitsyna EV; Kostromina MA; Muravieva TI; Makarov DA; Mikheeva OO; Kuranova IP; Esipov RS Acta Crystallogr F Struct Biol Commun; 2017 Jun; 73(Pt 6):369-375. PubMed ID: 28580926 [TBL] [Abstract][Full Text] [Related]
16. Crystal structures of the ATP-binding and ADP-release dwells of the V Suzuki K; Mizutani K; Maruyama S; Shimono K; Imai FL; Muneyuki E; Kakinuma Y; Ishizuka-Katsura Y; Shirouzu M; Yokoyama S; Yamato I; Murata T Nat Commun; 2016 Oct; 7():13235. PubMed ID: 27807367 [TBL] [Abstract][Full Text] [Related]
17. Inter-subunit interaction and quaternary rearrangement defined by the central stalk of prokaryotic V1-ATPase. Numoto N; Hasegawa Y; Takeda K; Miki K EMBO Rep; 2009 Nov; 10(11):1228-34. PubMed ID: 19779483 [TBL] [Abstract][Full Text] [Related]
18. Interaction and stoichiometry of the peripheral stalk subunits NtpE and NtpF and the N-terminal hydrophilic domain of NtpI of Enterococcus hirae V-ATPase. Yamamoto M; Unzai S; Saijo S; Ito K; Mizutani K; Suno-Ikeda C; Yabuki-Miyata Y; Terada T; Toyama M; Shirouzu M; Kobayashi T; Kakinuma Y; Yamato I; Yokoyama S; Iwata S; Murata T J Biol Chem; 2008 Jul; 283(28):19422-31. PubMed ID: 18460472 [TBL] [Abstract][Full Text] [Related]
19. Subunit H of the vacuolar (H+) ATPase inhibits ATP hydrolysis by the free V1 domain by interaction with the rotary subunit F. Jefferies KC; Forgac M J Biol Chem; 2008 Feb; 283(8):4512-9. PubMed ID: 18156183 [TBL] [Abstract][Full Text] [Related]
20. Deletion analysis of the subunit genes of V-type Na+-ATPase from Enterococcus hirae. Hosaka T; Takase K; Murata T; Kakinuma Y; Yamato I J Biochem; 2006 Jun; 139(6):1045-52. PubMed ID: 16788055 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]