These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 24247252)

  • 21. Three-Dimensional Numerical Simulation of Particle Focusing and Separation in Viscoelastic Fluids.
    Ni C; Jiang D
    Micromachines (Basel); 2020 Sep; 11(10):. PubMed ID: 33007973
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Numerical Study of Viscoelastic Microfluidic Particle Manipulation in a Microchannel with Asymmetrical Expansions.
    Wang T; Yuan D; Wan W; Zhang B
    Micromachines (Basel); 2023 Apr; 14(5):. PubMed ID: 37241539
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Submicron Particle Focusing and Exosome Sorting by Wavy Microchannel Structures within Viscoelastic Fluids.
    Zhou Y; Ma Z; Tayebi M; Ai Y
    Anal Chem; 2019 Apr; 91(7):4577-4584. PubMed ID: 30832474
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhancing particle focusing: a comparative experimental study of modified square wave and square wave microchannels in lift and Dean vortex regimes.
    Ashkani A; Jafari A; Ghomsheh MJ; Dumas N; Funfschilling D
    Sci Rep; 2024 Feb; 14(1):2679. PubMed ID: 38302543
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Investigation of viscoelastic focusing of particles and cells in a zigzag microchannel.
    Yuan D; Yadav S; Ta HT; Fallahi H; An H; Kashaninejad N; Ooi CH; Nguyen NT; Zhang J
    Electrophoresis; 2021 Nov; 42(21-22):2230-2237. PubMed ID: 34396540
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Continuous focusing of microparticles using inertial lift force and vorticity via multi-orifice microfluidic channels.
    Park JS; Song SH; Jung HI
    Lab Chip; 2009 Apr; 9(7):939-48. PubMed ID: 19294305
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impedance-based viscoelastic flow cytometry.
    Serhatlioglu M; Asghari M; Tahsin Guler M; Elbuken C
    Electrophoresis; 2019 Mar; 40(6):906-913. PubMed ID: 30632175
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Magnetophoresis-Enhanced Elasto-Inertial Migration of Microparticles and Cells in Microfluidics.
    Yan S; Liu Y; Nguyen NT; Zhang J
    Anal Chem; 2024 Mar; 96(9):3925-3932. PubMed ID: 38346322
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spiral microchannel with rectangular and trapezoidal cross-sections for size based particle separation.
    Guan G; Wu L; Bhagat AA; Li Z; Chen PC; Chao S; Ong CJ; Han J
    Sci Rep; 2013; 3():1475. PubMed ID: 23502529
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High-throughput inertial particle focusing in a curved microchannel: Insights into the flow-rate regulation mechanism and process model.
    Xiang N; Yi H; Chen K; Sun D; Jiang D; Dai Q; Ni Z
    Biomicrofluidics; 2013; 7(4):44116. PubMed ID: 24404049
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sheathless Inertial Focusing Chip Combining a Spiral Channel with Periodic Expansion Structures for Efficient and Stable Particle Sorting.
    Gou Y; Zhang S; Sun C; Wang P; You Z; Yalikun Y; Tanaka Y; Ren D
    Anal Chem; 2020 Jan; 92(2):1833-1841. PubMed ID: 31858787
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Review of Secondary Flow in Inertial Microfluidics.
    Zhao Q; Yuan D; Zhang J; Li W
    Micromachines (Basel); 2020 Apr; 11(5):. PubMed ID: 32354106
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sheathless elasto-inertial particle focusing and continuous separation in a straight rectangular microchannel.
    Yang S; Kim JY; Lee SJ; Lee SS; Kim JM
    Lab Chip; 2011 Jan; 11(2):266-73. PubMed ID: 20976348
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Vertical Hydrodynamic Focusing and Continuous Acoustofluidic Separation of Particles via Upward Migration.
    Ahmed H; Destgeer G; Park J; Jung JH; Sung HJ
    Adv Sci (Weinh); 2018 Feb; 5(2):1700285. PubMed ID: 29619294
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Particle focusing by 3D inertial microfluidics.
    Paiè P; Bragheri F; Di Carlo D; Osellame R
    Microsyst Nanoeng; 2017; 3():17027. PubMed ID: 31057868
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Secondary-flow-aided single-train elastic-inertial focusing in low elasticity viscoelastic fluids.
    Xiang N; Wang S; Ni Z
    Electrophoresis; 2021 Nov; 42(21-22):2256-2263. PubMed ID: 34184303
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Size-based hydrodynamic rare tumor cell separation in curved microfluidic channels.
    Sun J; Liu C; Li M; Wang J; Xianyu Y; Hu G; Jiang X
    Biomicrofluidics; 2013; 7(1):11802. PubMed ID: 24396523
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-throughput particle separation and concentration using spiral inertial filtration.
    Burke JM; Zubajlo RE; Smela E; White IM
    Biomicrofluidics; 2014 Mar; 8(2):024105. PubMed ID: 24738012
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-Throughput Particle Concentration Using Complex Cross-Section Microchannels.
    Mihandoust A; Razavi Bazaz S; Maleki-Jirsaraei N; Alizadeh M; A Taylor R; Ebrahimi Warkiani M
    Micromachines (Basel); 2020 Apr; 11(4):. PubMed ID: 32331275
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient Focusing of Aerosol Particles in the Microchannel under Reverse External Force: A Numerical Simulation Study.
    Qin Y; Fan LL; Zhao L
    Micromachines (Basel); 2023 Feb; 14(3):. PubMed ID: 36984961
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.