These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 24247252)

  • 41. Inertial microfluidics for sheath-less high-throughput flow cytometry.
    Bhagat AA; Kuntaegowdanahalli SS; Kaval N; Seliskar CJ; Papautsky I
    Biomed Microdevices; 2010 Apr; 12(2):187-95. PubMed ID: 19946752
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Long-range forces affecting equilibrium inertial focusing behavior in straight high aspect ratio microfluidic channels.
    Reece AE; Oakey J
    Phys Fluids (1994); 2016 Apr; 28(4):043303. PubMed ID: 27190494
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of wall slip on the viscoelastic particle ordering in a microfluidic channel.
    D'Avino G; Maffettone PL
    Electrophoresis; 2022 Nov; 43(21-22):2206-2216. PubMed ID: 35689363
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Multiple-Streams Focusing-Based Cell Separation in High Viscoelasticity Flow.
    Feng H; Patel D; Magda JJ; Geher S; Sigala PA; Gale BK
    ACS Omega; 2022 Nov; 7(45):41759-41767. PubMed ID: 36406492
    [TBL] [Abstract][Full Text] [Related]  

  • 45. High throughput single-cell and multiple-cell micro-encapsulation.
    Lagus TP; Edd JF
    J Vis Exp; 2012 Jun; (64):e4096. PubMed ID: 22733254
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Inertial separation in a contraction-expansion array microchannel.
    Lee MG; Choi S; Park JK
    J Chromatogr A; 2011 Jul; 1218(27):4138-43. PubMed ID: 21176909
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Spiral microchannel with ordered micro-obstacles for continuous and highly-efficient particle separation.
    Shen S; Tian C; Li T; Xu J; Chen SW; Tu Q; Yuan MS; Liu W; Wang J
    Lab Chip; 2017 Oct; 17(21):3578-3591. PubMed ID: 28975177
    [TBL] [Abstract][Full Text] [Related]  

  • 48. High-throughput sheathless and three-dimensional microparticle focusing using a microchannel with arc-shaped groove arrays.
    Zhao Q; Zhang J; Yan S; Yuan D; Du H; Alici G; Li W
    Sci Rep; 2017 Jan; 7():41153. PubMed ID: 28112225
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Efficient microfluidic enrichment of nano-/submicroparticle in viscoelastic fluid.
    Fan LL; Tian ZZ; Zhe J; Zhao L
    Electrophoresis; 2021 Nov; 42(21-22):2273-2280. PubMed ID: 33629394
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Investigation of particle lateral migration in sample-sheath flow of viscoelastic fluid and Newtonian fluid.
    Yuan D; Zhang J; Yan S; Peng G; Zhao Q; Alici G; Du H; Li W
    Electrophoresis; 2016 Aug; 37(15-16):2147-55. PubMed ID: 27140330
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Numerical simulations of viscoelastic particle migration in a microchannel with triangular cross-section.
    D'Avino G
    Electrophoresis; 2021 Nov; 42(21-22):2293-2302. PubMed ID: 34080213
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dean-Flow-Coupled Elasto-Inertial Focusing Accelerates Exosome Purification to Facilitate Single Vesicle Profiling.
    Bai JJ; Zhang X; Wei X; Wang Y; Du C; Wang ZJ; Chen ML; Wang JH
    Anal Chem; 2023 Jan; 95(4):2523-2531. PubMed ID: 36657481
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Inertio-elastic flow instabilities in a 90° bent microchannel.
    Kim J; Hong SO; Shim TS; Kim JM
    Soft Matter; 2017 Aug; 13(34):5656-5664. PubMed ID: 28815228
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Viscoelastic second normal stress difference dominated multiple-stream particle focusing in microfluidic channels.
    Feng H; Magda JJ; Gale BK
    Appl Phys Lett; 2019 Dec; 115(26):263702. PubMed ID: 32127720
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of shear flow on the hydrodynamic drag force of a spherical particle near a wall evaluated using optical tweezers and microfluidics.
    Geonzon LC; Kobayashi M; Adachi Y
    Soft Matter; 2021 Sep; 17(34):7914-7920. PubMed ID: 34373877
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Continuous separation of blood cells in spiral microfluidic devices.
    Nivedita N; Papautsky I
    Biomicrofluidics; 2013; 7(5):54101. PubMed ID: 24404064
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Particle focusing in staged inertial microfluidic devices for flow cytometry.
    Oakey J; Applegate RW; Arellano E; Di Carlo D; Graves SW; Toner M
    Anal Chem; 2010 May; 82(9):3862-7. PubMed ID: 20373755
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Sheathless inertial cell focusing and sorting with serial reverse wavy channel structures.
    Zhou Y; Ma Z; Ai Y
    Microsyst Nanoeng; 2018; 4():5. PubMed ID: 31057895
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Continuous separation of microparticles in a microfluidic channel via the elasto-inertial effect of non-Newtonian fluid.
    Nam J; Lim H; Kim D; Jung H; Shin S
    Lab Chip; 2012 Apr; 12(7):1347-54. PubMed ID: 22334376
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effects of Ionic Strength on Lateral Particle Migration in Shear-Thinning Xanthan Gum Solutions.
    Cho M; Hong SO; Lee SH; Hyun K; Kim JM
    Micromachines (Basel); 2019 Aug; 10(8):. PubMed ID: 31443169
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.