These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 24247252)

  • 61. Particle focusing mechanisms in curving confined flows.
    Gossett DR; Di Carlo D
    Anal Chem; 2009 Oct; 81(20):8459-65. PubMed ID: 19761190
    [TBL] [Abstract][Full Text] [Related]  

  • 62. PDMS-Parylene Hybrid, Flexible Microfluidics for Real-Time Modulation of 3D Helical Inertial Microfluidics.
    Jung BJ; Kim J; Kim JA; Jang H; Seo S; Lee W
    Micromachines (Basel); 2018 May; 9(6):. PubMed ID: 30424188
    [TBL] [Abstract][Full Text] [Related]  

  • 63. High-throughput blood cell focusing and plasma isolation using spiral inertial microfluidic devices.
    Xiang N; Ni Z
    Biomed Microdevices; 2015 Dec; 17(6):110. PubMed ID: 26553099
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Fractionation of Magnetic Microspheres in a Microfluidic Spiral: Interplay between Magnetic and Hydrodynamic Forces.
    Dutz S; Hayden ME; Häfeli UO
    PLoS One; 2017; 12(1):e0169919. PubMed ID: 28107472
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Dean migration of unfocused micron sized particles in low aspect ratio spiral microchannels.
    Duraiswamy S; Yung LYL
    Biomed Microdevices; 2021 Jul; 23(3):40. PubMed ID: 34309731
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Continuous Microfluidic Particle Separation via Elasto-Inertial Pinched Flow Fractionation.
    Lu X; Xuan X
    Anal Chem; 2015 Jun; 87(12):6389-96. PubMed ID: 26005774
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A microfluidic-based hydrodynamic trap for single particles.
    Johnson-Chavarria EM; Tanyeri M; Schroeder CM
    J Vis Exp; 2011 Jan; (47):. PubMed ID: 21304467
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Fundamentals of Differential Particle Inertial Focusing in Symmetric Sinusoidal Microchannels.
    Zhang J; Yuan D; Zhao Q; Teo AJT; Yan S; Ooi CH; Li W; Nguyen NT
    Anal Chem; 2019 Mar; 91(6):4077-4084. PubMed ID: 30669838
    [TBL] [Abstract][Full Text] [Related]  

  • 69. High-Throughput Isolation of Circulating Tumor Cells Using Cascaded Inertial Focusing Microfluidic Channel.
    Abdulla A; Liu W; Gholamipour-Shirazi A; Sun J; Ding X
    Anal Chem; 2018 Apr; 90(7):4397-4405. PubMed ID: 29537252
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Focusing and alignment of erythrocytes in a viscoelastic medium.
    Go T; Byeon H; Lee SJ
    Sci Rep; 2017 Jan; 7():41162. PubMed ID: 28117428
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Dynamic drag force based on iterative density mapping: A new numerical tool for three-dimensional analysis of particle trajectories in a dielectrophoretic system.
    Knoerzer M; Szydzik C; Tovar-Lopez FJ; Tang X; Mitchell A; Khoshmanesh K
    Electrophoresis; 2016 Feb; 37(4):645-57. PubMed ID: 26643028
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Assessment of Lagrangian Modeling of Particle Motion in a Spiral Microchannel for Inertial Microfluidics.
    Rasooli R; Çetin B
    Micromachines (Basel); 2018 Aug; 9(9):. PubMed ID: 30424366
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Continuous plasma extraction under viscoelastic fluid in a straight channel with asymmetrical expansion-contraction cavity arrays.
    Yuan D; Zhang J; Sluyter R; Zhao Q; Yan S; Alici G; Li W
    Lab Chip; 2016 Oct; 16(20):3919-3928. PubMed ID: 27714019
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Size and shape based chromosome separation in the inertial focusing device.
    Feng H; Hockin M; Capecchi M; Gale B; Sant H
    Biomicrofluidics; 2020 Nov; 14(6):064109. PubMed ID: 33312330
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Elasto-Inertial Pinched Flow Fractionation for Continuous Shape-Based Particle Separation.
    Lu X; Xuan X
    Anal Chem; 2015 Nov; 87(22):11523-30. PubMed ID: 26505113
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Elasto-inertial migration of deformable capsules in a microchannel.
    Raffiee AH; Dabiri S; Ardekani AM
    Biomicrofluidics; 2017 Nov; 11(6):064113. PubMed ID: 29333202
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Visualization of microscale particle focusing in diluted and whole blood using particle trajectory analysis.
    Lim EJ; Ober TJ; Edd JF; McKinley GH; Toner M
    Lab Chip; 2012 Jun; 12(12):2199-210. PubMed ID: 22382737
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Tunable nonlinear viscoelastic "focusing" in a microfluidic device.
    Leshansky AM; Bransky A; Korin N; Dinnar U
    Phys Rev Lett; 2007 Jun; 98(23):234501. PubMed ID: 17677908
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Viscoelastic Particle Train Formation in Microfluidic Flows Using a Xanthan Gum Aqueous Solution.
    Jeyasountharan A; Shahrivar K; D'Avino G; Del Giudice F
    Anal Chem; 2021 Apr; 93(13):5503-5512. PubMed ID: 33755431
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Electro-Viscoelastic Migration under Simultaneously Applied Microfluidic Pressure-Driven Flow and Electric Field.
    Serhatlioglu M; Isiksacan Z; Özkan M; Tuncel D; Elbuken C
    Anal Chem; 2020 May; 92(10):6932-6940. PubMed ID: 32295343
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.