BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 24247265)

  • 1. Genetics: genetics of biliary tract cancer.
    Ray K
    Nat Rev Gastroenterol Hepatol; 2013 Dec; 10(12):692. PubMed ID: 24247265
    [No Abstract]   [Full Text] [Related]  

  • 2. Exome sequencing identifies frequent inactivating mutations in BAP1, ARID1A and PBRM1 in intrahepatic cholangiocarcinomas.
    Jiao Y; Pawlik TM; Anders RA; Selaru FM; Streppel MM; Lucas DJ; Niknafs N; Guthrie VB; Maitra A; Argani P; Offerhaus GJA; Roa JC; Roberts LR; Gores GJ; Popescu I; Alexandrescu ST; Dima S; Fassan M; Simbolo M; Mafficini A; Capelli P; Lawlor RT; Ruzzenente A; Guglielmi A; Tortora G; de Braud F; Scarpa A; Jarnagin W; Klimstra D; Karchin R; Velculescu VE; Hruban RH; Vogelstein B; Kinzler KW; Papadopoulos N; Wood LD
    Nat Genet; 2013 Dec; 45(12):1470-1473. PubMed ID: 24185509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Whole-genome mutational landscape of liver cancers displaying biliary phenotype reveals hepatitis impact and molecular diversity.
    Fujimoto A; Furuta M; Shiraishi Y; Gotoh K; Kawakami Y; Arihiro K; Nakamura T; Ueno M; Ariizumi S; Nguyen HH; Shigemizu D; Abe T; Boroevich KA; Nakano K; Sasaki A; Kitada R; Maejima K; Yamamoto Y; Tanaka H; Shibuya T; Shibata T; Ojima H; Shimada K; Hayami S; Shigekawa Y; Aikata H; Ohdan H; Marubashi S; Yamada T; Kubo M; Hirano S; Ishikawa O; Yamamoto M; Yamaue H; Chayama K; Miyano S; Tsunoda T; Nakagawa H
    Nat Commun; 2015 Jan; 6():6120. PubMed ID: 25636086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Renal-cell carcinoma: a step closer to a new classification.
    Choueiri TK; Pomerantz MM; Signoretti S
    Lancet Oncol; 2013 Feb; 14(2):105-7. PubMed ID: 23333115
    [No Abstract]   [Full Text] [Related]  

  • 5. Comprehensive Molecular Profiling of Intrahepatic and Extrahepatic Cholangiocarcinomas: Potential Targets for Intervention.
    Lowery MA; Ptashkin R; Jordan E; Berger MF; Zehir A; Capanu M; Kemeny NE; O'Reilly EM; El-Dika I; Jarnagin WR; Harding JJ; D'Angelica MI; Cercek A; Hechtman JF; Solit DB; Schultz N; Hyman DM; Klimstra DS; Saltz LB; Abou-Alfa GK
    Clin Cancer Res; 2018 Sep; 24(17):4154-4161. PubMed ID: 29848569
    [No Abstract]   [Full Text] [Related]  

  • 6. Probing the Tumor Suppressor Function of BAP1 in CRISPR-Engineered Human Liver Organoids.
    Artegiani B; van Voorthuijsen L; Lindeboom RGH; Seinstra D; Heo I; Tapia P; López-Iglesias C; Postrach D; Dayton T; Oka R; Hu H; van Boxtel R; van Es JH; Offerhaus J; Peters PJ; van Rheenen J; Vermeulen M; Clevers H
    Cell Stem Cell; 2019 Jun; 24(6):927-943.e6. PubMed ID: 31130514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nuclear BAP1 loss is common in intrahepatic cholangiocarcinoma and a subtype of hepatocellular carcinoma but rare in pancreatic ductal adenocarcinoma.
    Mosbeh A; Halfawy K; Abdel-Mageed WS; Sweed D; Rahman MHA
    Cancer Genet; 2018 Aug; 224-225():21-28. PubMed ID: 29778232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expanding the clinical phenotype of hereditary BAP1 cancer predisposition syndrome, reporting three new cases.
    Pilarski R; Cebulla CM; Massengill JB; Rai K; Rich T; Strong L; McGillivray B; Asrat MJ; Davidorf FH; Abdel-Rahman MH
    Genes Chromosomes Cancer; 2014 Feb; 53(2):177-82. PubMed ID: 24243779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BAP1 Missense Mutations in Cancer: Friend or Foe?
    Okonska A; Felley-Bosco E
    Trends Cancer; 2019 Nov; 5(11):659-662. PubMed ID: 31735283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BAP1 acts as a tumor suppressor in intrahepatic cholangiocarcinoma by modulating the ERK1/2 and JNK/c-Jun pathways.
    Chen XX; Yin Y; Cheng JW; Huang A; Hu B; Zhang X; Sun YF; Wang J; Wang YP; Ji Y; Qiu SJ; Fan J; Zhou J; Yang XR
    Cell Death Dis; 2018 Oct; 9(10):1036. PubMed ID: 30305612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutations of candidate tumor suppressor genes at chromosome 3p in intrahepatic cholangiocarcinoma.
    You HL; Huang WT; Liu TT; Weng SW; Eng HL
    Exp Mol Pathol; 2017 Dec; 103(3):249-254. PubMed ID: 29122566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression and Mutation Patterns of PBRM1, BAP1 and SETD2 Mirror Specific Evolutionary Subtypes in Clear Cell Renal Cell Carcinoma.
    Bihr S; Ohashi R; Moore AL; Rüschoff JH; Beisel C; Hermanns T; Mischo A; Corrò C; Beyer J; Beerenwinkel N; Moch H; Schraml P
    Neoplasia; 2019 Feb; 21(2):247-256. PubMed ID: 30660076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PBRM1 and BAP1 as novel targets for renal cell carcinoma.
    Brugarolas J
    Cancer J; 2013; 19(4):324-32. PubMed ID: 23867514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects on survival of BAP1 and PBRM1 mutations in sporadic clear-cell renal-cell carcinoma: a retrospective analysis with independent validation.
    Kapur P; Peña-Llopis S; Christie A; Zhrebker L; Pavía-Jiménez A; Rathmell WK; Xie XJ; Brugarolas J
    Lancet Oncol; 2013 Feb; 14(2):159-167. PubMed ID: 23333114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Commentary on "Effects on survival of BAP1 and PBRM1 mutations in sporadic clear-cell renal-cell carcinoma: a retrospective analysis with independent validation." Kapur P, Peña-Llopis S, Christie A, Zhrebker L, Pavía-Jiménez A, Rathmell WK, Xie XJ, Brugarolas J. Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX. Lancet Oncol 2013; 14(2):159-67. [Epub 2013 Jan 16]. doi: 10.1016/S1470-2045(12)70584-3.
    Boorjian S
    Urol Oncol; 2014 Aug; 32(6):934-5. PubMed ID: 25087671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational analysis of the mutations in BAP1, PBRM1 and SETD2 genes reveals the impaired molecular processes in renal cell carcinoma.
    Piva F; Giulietti M; Occhipinti G; Santoni M; Massari F; Sotte V; Iacovelli R; Burattini L; Santini D; Montironi R; Cascinu S; Principato G
    Oncotarget; 2015 Oct; 6(31):32161-8. PubMed ID: 26452128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BAP1, PBRM1 and SETD2 in clear-cell renal cell carcinoma: molecular diagnostics and possible targets for personalized therapies.
    Piva F; Santoni M; Matrana MR; Satti S; Giulietti M; Occhipinti G; Massari F; Cheng L; Lopez-Beltran A; Scarpelli M; Principato G; Cascinu S; Montironi R
    Expert Rev Mol Diagn; 2015; 15(9):1201-10. PubMed ID: 26166446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aberrant promoter hypermethylation of PBRM1, BAP1, SETD2, KDM6A and other chromatin-modifying genes is absent or rare in clear cell RCC.
    Ibragimova I; Maradeo ME; Dulaimi E; Cairns P
    Epigenetics; 2013 May; 8(5):486-93. PubMed ID: 23644518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clear Cell Renal Cell Carcinoma Subtypes Identified by BAP1 and PBRM1 Expression.
    Joseph RW; Kapur P; Serie DJ; Parasramka M; Ho TH; Cheville JC; Frenkel E; Parker AS; Brugarolas J
    J Urol; 2016 Jan; 195(1):180-7. PubMed ID: 26300218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deubiquitylase USP9X suppresses tumorigenesis by stabilizing large tumor suppressor kinase 2 (LATS2) in the Hippo pathway.
    Zhu C; Ji X; Zhang H; Zhou Q; Cao X; Tang M; Si Y; Yan H; Li L; Liang T; Feng XH; Zhao B
    J Biol Chem; 2018 Jan; 293(4):1178-1191. PubMed ID: 29183995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.