These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Probing the Tumor Suppressor Function of BAP1 in CRISPR-Engineered Human Liver Organoids. Artegiani B; van Voorthuijsen L; Lindeboom RGH; Seinstra D; Heo I; Tapia P; López-Iglesias C; Postrach D; Dayton T; Oka R; Hu H; van Boxtel R; van Es JH; Offerhaus J; Peters PJ; van Rheenen J; Vermeulen M; Clevers H Cell Stem Cell; 2019 Jun; 24(6):927-943.e6. PubMed ID: 31130514 [TBL] [Abstract][Full Text] [Related]
7. Nuclear BAP1 loss is common in intrahepatic cholangiocarcinoma and a subtype of hepatocellular carcinoma but rare in pancreatic ductal adenocarcinoma. Mosbeh A; Halfawy K; Abdel-Mageed WS; Sweed D; Rahman MHA Cancer Genet; 2018 Aug; 224-225():21-28. PubMed ID: 29778232 [TBL] [Abstract][Full Text] [Related]
8. Expanding the clinical phenotype of hereditary BAP1 cancer predisposition syndrome, reporting three new cases. Pilarski R; Cebulla CM; Massengill JB; Rai K; Rich T; Strong L; McGillivray B; Asrat MJ; Davidorf FH; Abdel-Rahman MH Genes Chromosomes Cancer; 2014 Feb; 53(2):177-82. PubMed ID: 24243779 [TBL] [Abstract][Full Text] [Related]
9. BAP1 Missense Mutations in Cancer: Friend or Foe? Okonska A; Felley-Bosco E Trends Cancer; 2019 Nov; 5(11):659-662. PubMed ID: 31735283 [TBL] [Abstract][Full Text] [Related]
10. BAP1 acts as a tumor suppressor in intrahepatic cholangiocarcinoma by modulating the ERK1/2 and JNK/c-Jun pathways. Chen XX; Yin Y; Cheng JW; Huang A; Hu B; Zhang X; Sun YF; Wang J; Wang YP; Ji Y; Qiu SJ; Fan J; Zhou J; Yang XR Cell Death Dis; 2018 Oct; 9(10):1036. PubMed ID: 30305612 [TBL] [Abstract][Full Text] [Related]
11. Mutations of candidate tumor suppressor genes at chromosome 3p in intrahepatic cholangiocarcinoma. You HL; Huang WT; Liu TT; Weng SW; Eng HL Exp Mol Pathol; 2017 Dec; 103(3):249-254. PubMed ID: 29122566 [TBL] [Abstract][Full Text] [Related]
12. Expression and Mutation Patterns of PBRM1, BAP1 and SETD2 Mirror Specific Evolutionary Subtypes in Clear Cell Renal Cell Carcinoma. Bihr S; Ohashi R; Moore AL; Rüschoff JH; Beisel C; Hermanns T; Mischo A; Corrò C; Beyer J; Beerenwinkel N; Moch H; Schraml P Neoplasia; 2019 Feb; 21(2):247-256. PubMed ID: 30660076 [TBL] [Abstract][Full Text] [Related]
13. PBRM1 and BAP1 as novel targets for renal cell carcinoma. Brugarolas J Cancer J; 2013; 19(4):324-32. PubMed ID: 23867514 [TBL] [Abstract][Full Text] [Related]
14. Effects on survival of BAP1 and PBRM1 mutations in sporadic clear-cell renal-cell carcinoma: a retrospective analysis with independent validation. Kapur P; Peña-Llopis S; Christie A; Zhrebker L; Pavía-Jiménez A; Rathmell WK; Xie XJ; Brugarolas J Lancet Oncol; 2013 Feb; 14(2):159-167. PubMed ID: 23333114 [TBL] [Abstract][Full Text] [Related]
15. Commentary on "Effects on survival of BAP1 and PBRM1 mutations in sporadic clear-cell renal-cell carcinoma: a retrospective analysis with independent validation." Kapur P, Peña-Llopis S, Christie A, Zhrebker L, Pavía-Jiménez A, Rathmell WK, Xie XJ, Brugarolas J. Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX. Lancet Oncol 2013; 14(2):159-67. [Epub 2013 Jan 16]. doi: 10.1016/S1470-2045(12)70584-3. Boorjian S Urol Oncol; 2014 Aug; 32(6):934-5. PubMed ID: 25087671 [TBL] [Abstract][Full Text] [Related]
16. Computational analysis of the mutations in BAP1, PBRM1 and SETD2 genes reveals the impaired molecular processes in renal cell carcinoma. Piva F; Giulietti M; Occhipinti G; Santoni M; Massari F; Sotte V; Iacovelli R; Burattini L; Santini D; Montironi R; Cascinu S; Principato G Oncotarget; 2015 Oct; 6(31):32161-8. PubMed ID: 26452128 [TBL] [Abstract][Full Text] [Related]
17. BAP1, PBRM1 and SETD2 in clear-cell renal cell carcinoma: molecular diagnostics and possible targets for personalized therapies. Piva F; Santoni M; Matrana MR; Satti S; Giulietti M; Occhipinti G; Massari F; Cheng L; Lopez-Beltran A; Scarpelli M; Principato G; Cascinu S; Montironi R Expert Rev Mol Diagn; 2015; 15(9):1201-10. PubMed ID: 26166446 [TBL] [Abstract][Full Text] [Related]
18. Aberrant promoter hypermethylation of PBRM1, BAP1, SETD2, KDM6A and other chromatin-modifying genes is absent or rare in clear cell RCC. Ibragimova I; Maradeo ME; Dulaimi E; Cairns P Epigenetics; 2013 May; 8(5):486-93. PubMed ID: 23644518 [TBL] [Abstract][Full Text] [Related]
19. Clear Cell Renal Cell Carcinoma Subtypes Identified by BAP1 and PBRM1 Expression. Joseph RW; Kapur P; Serie DJ; Parasramka M; Ho TH; Cheville JC; Frenkel E; Parker AS; Brugarolas J J Urol; 2016 Jan; 195(1):180-7. PubMed ID: 26300218 [TBL] [Abstract][Full Text] [Related]
20. Deubiquitylase USP9X suppresses tumorigenesis by stabilizing large tumor suppressor kinase 2 (LATS2) in the Hippo pathway. Zhu C; Ji X; Zhang H; Zhou Q; Cao X; Tang M; Si Y; Yan H; Li L; Liang T; Feng XH; Zhao B J Biol Chem; 2018 Jan; 293(4):1178-1191. PubMed ID: 29183995 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]