BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 24247302)

  • 1. Fluorescence probing of the ferric Fenton reaction via novel chelation.
    Murale DP; Manjare ST; Lee YS; Churchill DG
    Chem Commun (Camb); 2014 Jan; 50(3):359-61. PubMed ID: 24247302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strong enhancement on fenton oxidation by addition of hydroxylamine to accelerate the ferric and ferrous iron cycles.
    Chen L; Ma J; Li X; Zhang J; Fang J; Guan Y; Xie P
    Environ Sci Technol; 2011 May; 45(9):3925-30. PubMed ID: 21469678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Apology. Hydrogen peroxide triggered prochelator activation, subsequent metal chelation, and attenuation of the Fenton reaction.
    Wei Y; Guo M
    Angew Chem Int Ed Engl; 2007; 46(37):6948. PubMed ID: 17849381
    [No Abstract]   [Full Text] [Related]  

  • 4. New insights in the dihydroxybenzenes-driven Fenton reaction: electrochemical study of interaction between dihydroxybenzenes and Fe(III).
    Contreras D; Rodríguez J; Basaez L; Freer J; Valenzuela R; Mansilla H; Vanýsek P
    Water Sci Technol; 2011; 64(10):2103-8. PubMed ID: 22105135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fenton-like oxidation of Rhodamine B in the presence of two types of iron (II, III) oxide.
    Xue X; Hanna K; Deng N
    J Hazard Mater; 2009 Jul; 166(1):407-14. PubMed ID: 19167810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Avoiding high-valent iron intermediates: superoxide reductase and rubrerythrin.
    Kurtz DM
    J Inorg Biochem; 2006 Apr; 100(4):679-93. PubMed ID: 16504301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative damage to DNA constituents by iron-mediated Fenton reactions--the thymidine family.
    Chattopadhyaya R
    J Biomol Struct Dyn; 2014; 32(1):155-69. PubMed ID: 23252741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pro-oxidant activity of aluminum: promoting the Fenton reaction by reducing Fe(III) to Fe(II).
    Ruipérez F; Mujika JI; Ugalde JM; Exley C; Lopez X
    J Inorg Biochem; 2012 Dec; 117():118-23. PubMed ID: 23085591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescent graphene oxide logic gates for discrimination of iron (3+) and iron (2+) in living cells by imaging.
    Mei Q; Jiang C; Guan G; Zhang K; Liu B; Liu R; Zhang Z
    Chem Commun (Camb); 2012 Aug; 48(60):7468-70. PubMed ID: 22728981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinct effects of oxalate versus malonate on the iron redox chemistry: Implications for the photo-Fenton reaction.
    Xiao D; Guo Y; Lou X; Fang C; Wang Z; Liu J
    Chemosphere; 2014 May; 103():354-8. PubMed ID: 24359921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dihydroxybenzenes: driven Fenton reactions.
    Rodríguez J; Parra C; Contreras ; Freer J; Baeza J
    Water Sci Technol; 2001; 44(5):251-6. PubMed ID: 11695467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coordination chemistry of siderophores: thermodynamics and kinetics of iron chelation and release.
    Albrecht-Gary AM; Crumbliss AL
    Met Ions Biol Syst; 1998; 35():239-327. PubMed ID: 9444763
    [No Abstract]   [Full Text] [Related]  

  • 13. Ferrous and Ferric Ion-Facilitated Dilute Acid Pretreatment of Lignocellulosic Biomass under Anaerobic or Aerobic Conditions: Observations of Fe Valence Interchange and the Role of Fenton Reaction.
    Wei H; Wang W; Ciesielski PN; Donohoe BS; Zhang M; Himmel ME; Chen X; Tucker MP
    Molecules; 2020 Mar; 25(6):. PubMed ID: 32245102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of a neutral electro-Fenton system with Fe@Fe(2)O(3)/ACF composite cathode for wastewater treatment.
    Li J; Ai Z; Zhang L
    J Hazard Mater; 2009 May; 164(1):18-25. PubMed ID: 18768254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The intracellular iron sensor calcein is catalytically oxidatively degraded by iron(II) in a hydrogen peroxide-dependent reaction.
    Hasinoff BB
    J Inorg Biochem; 2003 Jun; 95(2-3):157-64. PubMed ID: 12763660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing the Stokes' shift of BODIPY dyes via through-bond energy transfer and its application for Fe(3+)-detection in live cell imaging.
    Qu X; Liu Q; Ji X; Chen H; Zhou Z; Shen Z
    Chem Commun (Camb); 2012 May; 48(38):4600-2. PubMed ID: 22466507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A turn-on fluorescent probe based on hydroxylamine oxidation for detecting ferric ion selectively in living cells.
    Wang R; Yu F; Liu P; Chen L
    Chem Commun (Camb); 2012 May; 48(43):5310-2. PubMed ID: 22511221
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Histological detection of catalytic ferrous iron with the selective turn-on fluorescent probe RhoNox-1 in a Fenton reaction-based rat renal carcinogenesis model.
    Mukaide T; Hattori Y; Misawa N; Funahashi S; Jiang L; Hirayama T; Nagasawa H; Toyokuni S
    Free Radic Res; 2014 Sep; 48(9):990-5. PubMed ID: 24580501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iron autoxidation and free radical generation: effects of buffers, ligands, and chelators.
    Welch KD; Davis TZ; Aust SD
    Arch Biochem Biophys; 2002 Jan; 397(2):360-9. PubMed ID: 11795895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photo-assisted Fenton type processes for the degradation of phenol: a kinetic study.
    Kusić H; Koprivanac N; Bozić AL; Selanec I
    J Hazard Mater; 2006 Aug; 136(3):632-44. PubMed ID: 16466856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.