These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 24247383)

  • 1. The mating system in natural and shelterwood stands of Douglas-fir.
    Neale DB; Adams WT
    Theor Appl Genet; 1985 Dec; 71(2):201-7. PubMed ID: 24247383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of outcrossing rates in Duglas-fir using isozyme markers.
    Shaw DV; Allard RW
    Theor Appl Genet; 1982 Jun; 62(2):113-20. PubMed ID: 24270558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mating system and multilocus associations in a natural population of Pseudotsuga menziesii (Mirb.) Franco.
    Yeh FC; Morgan K
    Theor Appl Genet; 1987 Apr; 73(6):799-808. PubMed ID: 24241287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic evaluation of alternative silvicultural systems in coastal montane forests: western hemlock and amabilis fir.
    El-Kassaby YA; Dunsworth BG; Krakowski J
    Theor Appl Genet; 2003 Aug; 107(4):598-610. PubMed ID: 12750773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Biodegradable Formulation of MCH (3-Methylcyclohex-2-en-1-one) for Protecting Pseudotsuga menziesii from Dendroctonus pseudotsugae (Coleoptera: Curculionidae) Colonization.
    Foote GG; Fettig CJ; Ross DW; Runyon JB; Coleman TW; Gaylord ML; Graves AD; McMillin JD; Mortenson LA; Mafra-Neto A
    J Econ Entomol; 2020 Aug; 113(4):1858-1863. PubMed ID: 32281631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of overstory density on ecophysiology of red oak (Quercus rubra) and sugar maple (Acer saccharum) seedlings in central Ontario shelterwoods.
    Parker WC; Dey DC
    Tree Physiol; 2008 May; 28(5):797-804. PubMed ID: 18316311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Axiom SNP genotyping array for Douglas-fir.
    Howe GT; Jayawickrama K; Kolpak SE; Kling J; Trappe M; Hipkins V; Ye T; Guida S; Cronn R; Cushman SA; McEvoy S
    BMC Genomics; 2020 Jan; 21(1):9. PubMed ID: 31900111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of inbreeding on coastal Douglas fir growth and yield in operational plantations: a model-based approach.
    Wang T; Aitken SN; Woods JH; Polsson K; Magnussen S
    Theor Appl Genet; 2004 Apr; 108(6):1162-71. PubMed ID: 15067403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bark beetle effects on fuel profiles across a range of stand structures in Douglas-fir forests of Greater Yellowstone.
    Donato DC; Harvey BJ; Romme WH; Simard M; Turner MG
    Ecol Appl; 2013 Jan; 23(1):3-20. PubMed ID: 23495632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The nature of inbreeding in a seed orchard of Douglas fir as shown by an efficient multilocus model.
    Ritland K; El-Kassaby YA
    Theor Appl Genet; 1985 Dec; 71(3):375-84. PubMed ID: 24247441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Response of old-growth conifers to reduction in stand density in western Oregon forests.
    Latham P; Tappeiner J
    Tree Physiol; 2002 Feb; 22(2-3):137-46. PubMed ID: 11830410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biophysical controls of carbon flows in three successional Douglas-fir stands based on eddy-covariance measurements.
    Chen J; Falk M; Euskirchen E; U KT; Suchanek TH; Ustin SL; Bond BJ; Brosofske KD; Phillips N; Bi R
    Tree Physiol; 2002 Feb; 22(2-3):169-77. PubMed ID: 11830413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Belowground carbon pools and processes in different age stands of Douglas-fir.
    Klopatek JM
    Tree Physiol; 2002 Feb; 22(2-3):197-204. PubMed ID: 11830416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydraulic architecture and photosynthetic capacity as constraints on release from suppression in Douglas-fir and western hemlock.
    Renninger HJ; Meinzer FC; Gartner BL
    Tree Physiol; 2007 Jan; 27(1):33-42. PubMed ID: 17169904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Canopy light transmittance in Douglas-fir--western hemlock stands.
    Parker GG; Davis MM; Chapotin SM
    Tree Physiol; 2002 Feb; 22(2-3):147-57. PubMed ID: 11830411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fire-mediated pathways of stand development in Douglas-fir/ western hemlock forests of the Pacific Northwest, USA.
    Tepley AJ; Swanson FJ; Spies TA
    Ecology; 2013 Aug; 94(8):1729-43. PubMed ID: 24015517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Douglas-fir ectomycorrhizae in 40- and 400-year-old stands: mycobiont availability to late successional western hemlock.
    Horton TR; Molina R; Hood K
    Mycorrhiza; 2005 Sep; 15(6):393-403. PubMed ID: 16021480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterizing root-associated fungal communities and soils of Douglas-fir (Pseudotsuga menziesii) stands that naturally produce Oregon white truffles (Tuber oregonense and Tuber gibbosum).
    Benucci GM; Lefevre C; Bonito G
    Mycorrhiza; 2016 Jul; 26(5):367-76. PubMed ID: 26743427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tannin, nitrogen, and cell wall composition of green vs. senescent Douglas-fir foliage : Within- and between-stand differences in stands of unequal density.
    Horner JD; Cates RG; Gosz JR
    Oecologia; 1987 Jul; 72(4):515-519. PubMed ID: 28312512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and compositional controls on transpiration in 40- and 450-year-old riparian forests in western Oregon, USA.
    Moore GW; Bond BJ; Jones JA; Phillips N; Meinzer FC
    Tree Physiol; 2004 May; 24(5):481-91. PubMed ID: 14996653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.