These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 24247402)

  • 1. Genetic manipulation in cultivars of oilseed rape (Brassica napus) using Agrobacterium.
    Ooms G; Bains A; Burrell M; Karp A; Twell D; Wilcox E
    Theor Appl Genet; 1985 Dec; 71(2):325-9. PubMed ID: 24247402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increasing genetic variability in oilseed rape (Brassica napus) - Genotypes and phenotypes of oilseed rape transformed by wild type Agrobacterium rhizogenes.
    Hegelund JN; Liang C; Lauridsen UB; Kemp O; Lütken H; Müller R
    Plant Sci; 2018 Jun; 271():20-26. PubMed ID: 29650153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic modification of potato development using Ri T-DNA.
    Ooms G; Karp A; Burrell MM; Twell D; Roberts J
    Theor Appl Genet; 1985 Jul; 70(4):440-6. PubMed ID: 24253018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transformation of microspore-derived embryos of winter oilseed rape (Brassica napus L.) by using Agrobacterium tumefaciens.
    Cegielska-Taras T; Pniewski T; Szała L
    J Appl Genet; 2008; 49(4):343-7. PubMed ID: 19029681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential for Seed Transmission of
    Zheng X; Lopisso DT; Eseola AB; Koopmann B; von Tiedemann A
    Plant Dis; 2019 Aug; 103(8):1843-1849. PubMed ID: 31124750
    [No Abstract]   [Full Text] [Related]  

  • 6. Agrobacterium-Mediated Transformation of Oilseed Rape (Brassica napus).
    Bates R; Craze M; Wallington EJ
    Curr Protoc Plant Biol; 2017 Dec; 2(4):287-298. PubMed ID: 33383983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From tumour to tuber; tumour cell characteristics and chromosome numbers of crown gall-derived tetraploid potato plants (Solanum tuberosum cv. 'Maris Bard').
    Ooms G; Karp A; Roberts J
    Theor Appl Genet; 1983 Jul; 66(2):169-72. PubMed ID: 24263772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Agrobacterium tumefaciens and Agrobacterium rhizogenes-Mediated Transformation of Potato and the Promoter Activity of a Suberin Gene by GUS Staining.
    Fernández-Piñán S; López J; Armendariz I; Boher P; Figueras M; Serra O
    J Vis Exp; 2019 Mar; (145):. PubMed ID: 30985754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transgenic Medicago truncatula plants obtained from Agrobacterium tumefaciens -transformed roots and Agrobacterium rhizogenes-transformed hairy roots.
    Crane C; Wright E; Dixon RA; Wang ZY
    Planta; 2006 May; 223(6):1344-54. PubMed ID: 16575594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transgenic Brassica napus plants obtained by cocultivation of protoplasts with Agrobacterium tumefaciens.
    Thomzik JE; Hain R
    Plant Cell Rep; 1990 Sep; 9(5):233-6. PubMed ID: 24226815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Highly Embryogenic
    Calabuig-Serna A; Mir R; Porcel R; Seguí-Simarro JM
    Plants (Basel); 2023 May; 12(10):. PubMed ID: 37653925
    [No Abstract]   [Full Text] [Related]  

  • 12. Bialaphos stimulates shoot regeneration from hairy roots of snapdragon (Antirrhinum majus L.) transformed by Agrobacterium rhizogenes.
    Hoshino Y; Mii M
    Plant Cell Rep; 1998 Feb; 17(4):256-261. PubMed ID: 30736602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contrasting Patterns of Colonization with
    Zheng X; Pfordt A; Khatri L; Eseola AB; Wilch A; Koopmann B; von Tiedemann A
    Plant Dis; 2019 Aug; 103(8):2090-2099. PubMed ID: 31210597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of a Brassica napus extensin gene in the vascular system of transgenic tobacco and rape plants.
    Shirsat AH; Wilford N; Evans IM; Gatehouse LN; Croy RR
    Plant Mol Biol; 1991 Oct; 17(4):701-9. PubMed ID: 1912494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plant regeneration from hairy-root cultures transformed by infection with Agrobacterium rhizogenes in Catharanthus roseus.
    Choi PS; Kim YD; Choi KM; Chung HJ; Choi DW; Liu JR
    Plant Cell Rep; 2004 Jun; 22(11):828-31. PubMed ID: 14963692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ri-plasmid as a helper for introducing vector DNA into alfalfa plants.
    Sukhapinda K; Spivey R; Shahin EA
    Plant Mol Biol; 1987 May; 8(3):209-16. PubMed ID: 24301125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unexpected diversity of feral genetically modified oilseed rape (Brassica napus L.) despite a cultivation and import ban in Switzerland.
    Schulze J; Frauenknecht T; Brodmann P; Bagutti C
    PLoS One; 2014; 9(12):e114477. PubMed ID: 25464509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distribution, availability and translocation of heavy metals in soil-oilseed rape (Brassica napus L.) system related to soil properties.
    Cao X; Wang X; Tong W; Gurajala HK; Lu M; Hamid Y; Feng Y; He Z; Yang X
    Environ Pollut; 2019 Sep; 252(Pt A):733-741. PubMed ID: 31200201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Production of transgenic rape plants (Brassica napus L.) using Agrobacterium tumefaciens].
    Radchuk VV; Klocke E; Radchuk RI; Neumann M; Blume YaB
    Genetika; 2000 Jul; 36(7):932-41. PubMed ID: 10994497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fixed-route monitoring and a comparative study of the occurrence of herbicide-resistant oilseed rape (Brassica napus L.) along a Japanese roadside.
    Nishizawa T; Nakajima N; Tamaoki M; Aono M; Kubo A; Saji H
    GM Crops Food; 2016 Jan; 7(1):20-37. PubMed ID: 26838503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.