These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 24247811)
1. Experimental and analytical comparative study of optical coefficient of fresh and frozen rat tissues. Mesradi M; Genoux A; Cuplov V; Abi Haidar D; Jan S; Buvat I; Pain F J Biomed Opt; 2013 Nov; 18(11):117010. PubMed ID: 24247811 [TBL] [Abstract][Full Text] [Related]
2. Monitoring of tissue optical properties during thermal coagulation of ex vivo tissues. Nagarajan VK; Yu B Lasers Surg Med; 2016 Sep; 48(7):686-94. PubMed ID: 27250022 [TBL] [Abstract][Full Text] [Related]
3. In vivo estimation of light scattering and absorption properties of rat brain using a single-reflectance fiber probe during cortical spreading depression. Nishidate I; Mizushima C; Yoshida K; Kawauchi S; Sato S; Sato M J Biomed Opt; 2015 Feb; 20(2):27003. PubMed ID: 25672817 [TBL] [Abstract][Full Text] [Related]
4. Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum. Liu Q; Zhu C; Ramanujam N J Biomed Opt; 2003 Apr; 8(2):223-36. PubMed ID: 12683848 [TBL] [Abstract][Full Text] [Related]
5. Photoacoustic detection and optical spectroscopy of high-intensity focused ultrasound-induced thermal lesions in biologic tissue. Alhamami M; Kolios MC; Tavakkoli J Med Phys; 2014 May; 41(5):053502. PubMed ID: 24784408 [TBL] [Abstract][Full Text] [Related]
6. Quantitative prediction of AFB He X; You J; Yang X; Li L; Shen F; Wang L; Li P; Fang Y Spectrochim Acta A Mol Biomol Spectrosc; 2024 Apr; 310():123900. PubMed ID: 38262292 [TBL] [Abstract][Full Text] [Related]
7. Empirical relationship between Kubelka-Munk and radiative transfer coefficients for extracting optical parameters of tissues in diffusive and nondiffusive regimes. Roy A; Ramasubramaniam R; Gaonkar HA J Biomed Opt; 2012 Nov; 17(11):115006. PubMed ID: 23214177 [TBL] [Abstract][Full Text] [Related]
8. Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique. Simpson CR; Kohl M; Essenpreis M; Cope M Phys Med Biol; 1998 Sep; 43(9):2465-78. PubMed ID: 9755939 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of a fiberoptic-based system for measurement of optical properties in highly attenuating turbid media. Sharma D; Agrawal A; Matchette LS; Pfefer TJ Biomed Eng Online; 2006 Aug; 5():49. PubMed ID: 16928274 [TBL] [Abstract][Full Text] [Related]
10. Fabrication and characterization of multi-biomarker optimized tissue-mimicking phantoms for multi-modal optical spectroscopy. Gautam R; Mac Mahon D; Eager G; Ma H; Guadagno CN; Andersson-Engels S; Konugolu Venkata Sekar S Analyst; 2023 Sep; 148(19):4768-4776. PubMed ID: 37665320 [TBL] [Abstract][Full Text] [Related]
11. In vitro determination of normal and neoplastic human brain tissue optical properties using inverse adding-doubling. Gebhart SC; Lin WC; Mahadevan-Jansen A Phys Med Biol; 2006 Apr; 51(8):2011-27. PubMed ID: 16585842 [TBL] [Abstract][Full Text] [Related]
12. Extraction of optical properties and prediction of light distribution in rat brain tissue. Azimipour M; Baumgartner R; Liu Y; Jacques SL; Eliceiri K; Pashaie R J Biomed Opt; 2014; 19(7):75001. PubMed ID: 24996660 [TBL] [Abstract][Full Text] [Related]
13. Polarization influence on reflectance measurements in the spatial frequency domain. Wiest J; Bodenschatz N; Brandes A; Liemert A; Kienle A Phys Med Biol; 2015 Aug; 60(15):5717-32. PubMed ID: 26158399 [TBL] [Abstract][Full Text] [Related]
14. Changes in optical properties of rat cerebral cortical slices during oxygen glucose deprivation. Nishidate I; Yoshida K; Sato M Appl Opt; 2010 Dec; 49(34):6617-23. PubMed ID: 21124539 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of Cerebral Hemodynamics and Tissue Morphology of In Vivo Rat Brain Using Spectral Diffuse Reflectance Imaging. Nishidate I; Ishizuka T; Mustari A; Yoshida K; Kawauchi S; Sato S; Sato M Appl Spectrosc; 2017 May; 71(5):866-878. PubMed ID: 27381353 [TBL] [Abstract][Full Text] [Related]
16. Retrieval of Absorption or Scattering Coefficient Spectrum (RASCS) Program: A Tool to Monitor Optical Properties in Real Time. Quistián-Vázquez B; Morales-Cruzado B; Sarmiento-Gómez E; Pérez-Gutiérrez FG Lasers Surg Med; 2020 Jul; 52(6):552-559. PubMed ID: 31571262 [TBL] [Abstract][Full Text] [Related]
17. Influence of osmolarity on the optical properties of human erythrocytes. Friebel M; Helfmann J; Meinke MC J Biomed Opt; 2010; 15(5):055005. PubMed ID: 21054087 [TBL] [Abstract][Full Text] [Related]
18. [Spectral characteristics of normal breast samples in the 350-850 nm wavelength range]. Wang YH; Yang HQ; Xie SS; Ye Z; Su YM Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Oct; 29(10):2751-5. PubMed ID: 20038053 [TBL] [Abstract][Full Text] [Related]
19. Determination of the tumor tissue optical properties during and after photodynamic therapy using inverse Monte Carlo method and double integrating sphere between 350 and 1000 nm. Honda N; Ishii K; Terada T; Nanjo T; Awazu K J Biomed Opt; 2011 May; 16(5):058003. PubMed ID: 21639587 [TBL] [Abstract][Full Text] [Related]
20. Optical absorption and scattering of bovine cornea, lens and retina in the visible region. Sardar DK; Yust BG; Barrera FJ; Mimun LC; Tsin AT Lasers Med Sci; 2009 Nov; 24(6):839-47. PubMed ID: 19495828 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]