These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 24247837)

  • 1. The genetic control of grain esterases in hexaploid wheat : 2. Homoeologous loci in related species.
    Ainsworth CC; Miller TE; Gale MD
    Theor Appl Genet; 1986 Mar; 72(2):219-25. PubMed ID: 24247837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Est-7, a set of genes controlling green tissue esterases in wheat and related species.
    Liu CJ; Gale MD
    Theor Appl Genet; 1990 Jun; 79(6):781-4. PubMed ID: 24226739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for AEGILOPS SHARONENSIS Eig as the Donor of the B Genome of Wheat.
    Kushnir U; Halloran GM
    Genetics; 1981 Nov; 99(3-4):495-512. PubMed ID: 17249127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Milling energy requirement of the aneuploid stocks of common wheat, including alien addition lines.
    Forster BP; Ellis RP
    Theor Appl Genet; 1990 Dec; 80(6):806-9. PubMed ID: 24221113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromosomal location of structural genes controlling isozymes in Hordeum chilense : 3. Esterases, glutamate oxaloacetate transaminase and phosphoglucomutase.
    Fernández JA; Jouve N
    Theor Appl Genet; 1987 Sep; 73(5):690-8. PubMed ID: 24241192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biochemical evidence of a translocation between 6 RL/7 RL chromosome arms in rye (Secale cereale L.). A genetic map of 6R chromosome.
    Benito C; Gallego FJ; Zaragoza C; Frade JM; Figueiras AM
    Theor Appl Genet; 1991 Jul; 82(1):27-32. PubMed ID: 24212857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomic differentiation of Hordeum chilense from H. vulgare as revealed by repetitive and EST sequences.
    Hagras AA; Kishii M; Tanaka H; Sato K; Tsujimoto H
    Genes Genet Syst; 2005 Jun; 80(3):147-59. PubMed ID: 16172528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ibf-1 (Iodine binding factor), a highly variable marker system in the Triticeae.
    Liu CJ; Gale MD
    Theor Appl Genet; 1989 Feb; 77(2):233-40. PubMed ID: 24232534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrophoretic survey of seedling esterases in wheats in relation to their phylogeny.
    Jaaska V
    Theor Appl Genet; 1980 Nov; 56(6):273-84. PubMed ID: 24305916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of wheat-Secale africanum chromosome 5R(a) derivatives carrying Secale specific genes for grain hardness.
    Li G; Gao D; La S; Wang H; Li J; He W; Yang E; Yang Z
    Planta; 2016 May; 243(5):1203-12. PubMed ID: 26883668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic control of a novel series of trypsin inhibitors in wheat and its relatives.
    Koebner RM
    Biochem Genet; 1987 Aug; 25(7-8):591-602. PubMed ID: 3447592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization and Evaluation of Resistance to Powdery Mildew of Wheat-
    Wang Y; Long D; Wang Y; Wang C; Liu X; Zhang H; Tian Z; Chen C; Ji W
    Int J Mol Sci; 2020 Mar; 21(5):. PubMed ID: 32182810
    [No Abstract]   [Full Text] [Related]  

  • 13. Aegilops-Secale amphiploids: chromosome categorisation, pollen viability and identification of fungal disease resistance genes.
    Kwiatek M; Błaszczyk L; Wiśniewska H; Apolinarska B
    J Appl Genet; 2012 Feb; 53(1):37-40. PubMed ID: 22002121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fate of Aegilops speltoides-derived, repetitive DNA sequences in diploid Aegilops species, wheat-Aegilops amphiploids and derived chromosome addition lines.
    Kumar S; Friebe B; Gill BS
    Cytogenet Genome Res; 2010 Jul; 129(1-3):47-54. PubMed ID: 20551615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of a preferentially transmitted Aegilops sharonensis chromosome in wheat.
    Miller TE; Hutchinson J; Chapman V
    Theor Appl Genet; 1982 Mar; 61(1):27-33. PubMed ID: 24271370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-throughput genotyping of wheat-barley amphiploids utilising diversity array technology (DArT).
    Castillo A; Ramírez MC; Martín AC; Kilian A; Martín A; Atienza SG
    BMC Plant Biol; 2013 Jun; 13():87. PubMed ID: 23725040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ph1 gene derived from Aegilops speltoides induces homoeologous chromosome pairing in wide crosses of Triticum aestivum.
    Aghaee-Sarbarzeh M; Harjit-Singh ; Dhaliwal HS
    J Hered; 2000; 91(5):417-21. PubMed ID: 10994715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of the S-Genomes in
    Ruban AS; Badaeva ED
    Front Plant Sci; 2018; 9():1756. PubMed ID: 30564254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of T. aestivum L.-H. californicum alien chromosome lines and assignment of homoeologous groups of Hordeum californicum chromosomes.
    Fang Y; Yuan J; Wang Z; Wang H; Xiao J; Yang Z; Zhang R; Qi Z; Xu W; Hu L; Wang XE
    J Genet Genomics; 2014 Aug; 41(8):439-47. PubMed ID: 25160976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic characterisation of a further homoeoallelic series of grain esterase loci,Est-6, in wheat.
    Petchey EM; Koebner RM; Gale MD
    Theor Appl Genet; 1990 May; 79(3):294-6. PubMed ID: 24226345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.