These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 24248232)

  • 41. Epicuticular wax lipid composition of endemic European Betula species in a simulated ontogenetic/diagenetic continuum and its application to chemotaxonomy and paleobotany.
    Weber J; Schwark L
    Sci Total Environ; 2020 Aug; 730():138324. PubMed ID: 32388385
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparative analysis of total wax content, chemical composition and crystal morphology of cuticular wax in Korla pear under different relative humidity of storage.
    Wang Y; Mao H; Lv Y; Chen G; Jiang Y
    Food Chem; 2021 Mar; 339():128097. PubMed ID: 32979715
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Total internal reflection Raman spectroscopy of barley leaf epicuticular waxes in vivo.
    Greene PR; Bain CD
    Colloids Surf B Biointerfaces; 2005 Nov; 45(3-4):174-80. PubMed ID: 16198093
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cuticular waxes in alpine meadow plants: climate effect inferred from latitude gradient in Qinghai-Tibetan Plateau.
    Guo Y; Guo N; He Y; Gao J
    Ecol Evol; 2015 Sep; 5(18):3954-68. PubMed ID: 26445653
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cuticular wax composition changes of 10 apple cultivars during postharvest storage.
    Chai Y; Li A; Chit Wai S; Song C; Zhao Y; Duan Y; Zhang B; Lin Q
    Food Chem; 2020 Sep; 324():126903. PubMed ID: 32361095
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Environment-Driven Adaptations of Leaf Cuticular Waxes Are Inheritable for
    Guo Y; Zhao X; Li Y; Li Z; Xiao Q; Wang Y; Zhang X; Ni Y
    Front Plant Sci; 2021; 12():620245. PubMed ID: 34079563
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The F-Box Protein SAGL1 and ECERIFERUM3 Regulate Cuticular Wax Biosynthesis in Response to Changes in Humidity in Arabidopsis.
    Kim H; Yu SI; Jung SH; Lee BH; Suh MC
    Plant Cell; 2019 Sep; 31(9):2223-2240. PubMed ID: 31320482
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Identification of In-Chain-Functionalized Compounds and Methyl-Branched Alkanes in Cuticular Waxes of Triticum aestivum cv. Bethlehem.
    Racovita RC; Jetter R
    PLoS One; 2016; 11(11):e0165827. PubMed ID: 27820857
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Coverage and composition of cuticular waxes on the fronds of the temperate ferns Pteridium aquilinum, Cryptogramma crispa, Polypodium glycyrrhiza, Polystichum munitum and Gymnocarpium dryopteris.
    Guo Y; Li JJ; Busta L; Jetter R
    Ann Bot; 2018 Sep; 122(4):555-568. PubMed ID: 30252045
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Leaf surface wax is a source of plant methane formation under UV radiation and in the presence of oxygen.
    Bruhn D; Mikkelsen TN; Rolsted MM; Egsgaard H; Ambus P
    Plant Biol (Stuttg); 2014 Mar; 16(2):512-6. PubMed ID: 24400835
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of cuticular wax content and specific leaf area on accumulation and partition of PAHs in different tissues of wheat leaf.
    Wang J; Bao H; Zhang H; Li J; Hong H; Wu F
    Environ Sci Pollut Res Int; 2020 May; 27(15):18793-18802. PubMed ID: 32207018
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Chemical Composition, Crystal Morphology, and Key Gene Expression of the Cuticular Waxes of Goji (
    Wang P; Wang J; Zhang H; Wang C; Zhao L; Huang T; Qing K
    J Agric Food Chem; 2021 Jul; 69(28):7874-7883. PubMed ID: 34251203
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The effects of stress on plant cuticular waxes.
    Shepherd T; Wynne Griffiths D
    New Phytol; 2006; 171(3):469-99. PubMed ID: 16866954
    [TBL] [Abstract][Full Text] [Related]  

  • 54. UV-B and Drought Stress Influenced Growth and Cellular Compounds of Two Cultivars of Phaseolus vulgaris L. (Fabaceae).
    Santos DYAC; Ferreira MJP; Matos TM; Sala-Carvalho WR; Anselmo-Moreira F; Roma LP; Carvalho JCS; Peña-Hidalgo M; French K; Waterman MJ; Robinson SA; Furlan CM
    Photochem Photobiol; 2021 Jan; 97(1):166-179. PubMed ID: 32762087
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Characterization of Glossy1-homologous genes in rice involved in leaf wax accumulation and drought resistance.
    Islam MA; Du H; Ning J; Ye H; Xiong L
    Plant Mol Biol; 2009 Jul; 70(4):443-56. PubMed ID: 19322663
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Wax biosynthesis in response to danger: its regulation upon abiotic and biotic stress.
    Lewandowska M; Keyl A; Feussner I
    New Phytol; 2020 Aug; 227(3):698-713. PubMed ID: 32242934
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Leaf cuticular wax composition of a genetically diverse collection of lettuce (
    Luo W; Gonzalez E; Zarei A; Calleja S; Rozzi B; Demieville J; Li H; Truco MJ; Lavelle D; Michelmore R; Dyer JM; Jenks MA; Pauli D
    Heliyon; 2024 Mar; 10(5):e27226. PubMed ID: 38463774
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Chemical composition of the epicuticular and intracuticular wax layers on the adaxial side of Ligustrum vulgare leaves.
    Buschhaus C; Herz H; Jetter R
    New Phytol; 2007; 176(2):311-316. PubMed ID: 17696977
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Diversity of cuticular wax among Salix species and Populus species hybrids.
    Cameron KD; Teece MA; Bevilacqua E; Smart LB
    Phytochemistry; 2002 Aug; 60(7):715-25. PubMed ID: 12127589
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Low secondary leaf wax n-alkane synthesis on fully mature leaves of C3 grasses grown at controlled environmental conditions and variable humidity.
    Gamarra B; Kahmen A
    Rapid Commun Mass Spectrom; 2017 Jan; 31(2):218-226. PubMed ID: 27778411
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.