BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 24249141)

  • 1. Effects of nitrogen and Douglas-fir allelochemicals on development of the gypsy moth,Lymantria dispar.
    Joseph G; Kelsey RG; Moldenke AF; Miller JC; Berry RE; Wernz JG
    J Chem Ecol; 1993 Jun; 19(6):1245-63. PubMed ID: 24249141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. White alder and Douglas-fir foliage quality and interegg-mass influences on larval development of gypsy moth,Lymantria dispar.
    Joseph G; Miller JC; Berry RE; Wernz J; Moldenke AF; Kelsey RG
    J Chem Ecol; 1991 Sep; 17(9):1783-99. PubMed ID: 24257920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leaf ontogeny influences leaf phenolics and the efficacy of genetically expressed Bacillus thuringiensis cry1A(a) d-endotoxin in hybrid poplar against gypsy moth.
    Kleiner KW; Ellis DD; McCown BH; Raffa KF
    J Chem Ecol; 2003 Nov; 29(11):2585-602. PubMed ID: 14682535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Starvation resistance of gypsy moth, Lymantria dispar (L.) (Lepidoptera: Lymantriidae): tradeoffs among growth, body size, and survival.
    Stockhoff BA
    Oecologia; 1991 Nov; 88(3):422-429. PubMed ID: 28313806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nutritional changes in host foliage during and after defoliation, and their relation to the weight of gypsy moth pupae.
    Valentine HT; Wallner WE; Wargo PM
    Oecologia; 1983 Mar; 57(3):298-302. PubMed ID: 28309354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Some effects of douglas fir terpenes on certain microorganisms.
    Andrews RE; Parks LW; Spence KD
    Appl Environ Microbiol; 1980 Aug; 40(2):301-4. PubMed ID: 16345609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The potential role of ectomycorrhizal fungi in determining Douglas-fir resistance to defoliation by the western spruce budworm (Lepidoptera: Tortricidae).
    Palermo BL; Clancy KM; Koch GW
    J Econ Entomol; 2003 Jun; 96(3):783-91. PubMed ID: 12852617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Action of douglas fir tussock moth larvae and their microflora on dietary terpenes.
    Andrews RE; Spence KD
    Appl Environ Microbiol; 1980 Nov; 40(5):959-63. PubMed ID: 16345660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of chronic stylet-feeder infestation on folivore-induced signaling and defenses in a conifer.
    Rigsby CM; Body MJA; May A; Oppong A; Kostka A; Houseman N; Savage S; Whitney ER; Kinahan IG; Deboef B; Orians CM; Appel HM; Schultz JC; Preisser EL
    Tree Physiol; 2021 Mar; 41(3):416-427. PubMed ID: 33094330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Volatile and Within-Needle Terpene Changes to Douglas-fir Trees Associated With Douglas-fir Beetle (Coleoptera: Curculionidae) Attack.
    Giunta AD; Runyon JB; Jenkins MJ; Teich M
    Environ Entomol; 2016 Aug; 45(4):920-9. PubMed ID: 27231258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of CO
    Roth SK; Lindroth RL
    Oecologia; 1994 Jul; 98(2):133-138. PubMed ID: 28313969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of defoliation-induced delayed changes in silver birch foliar chemistry on gypsy moth fitness, immune response, and resistance to baculovirus infection.
    Martemyanov VV; Dubovskiy IM; Rantala MJ; Salminen JP; Belousova IA; Pavlushin SV; Bakhvalov SA; Glupov VV
    J Chem Ecol; 2012 Mar; 38(3):295-305. PubMed ID: 22396147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth response of Douglas-fir seedlings to nitrogen fertilization: importance of Rubisco activation state and respiration rates.
    Manter DK; Kavanagh KL; Rose CL
    Tree Physiol; 2005 Aug; 25(8):1015-21. PubMed ID: 15929932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance of Wild and Laboratory-Reared Gypsy Moth (Lepidoptera: Erebidae): A Comparison between Foliage and Artificial Diet.
    Grayson KL; Parry D; Faske TM; Hamilton A; Tobin PC; Agosta SJ; Johnson DM
    Environ Entomol; 2015 Jun; 44(3):864-73. PubMed ID: 26313993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Rearing Density on Developmental Traits of Two Different Biotypes of the Gypsy Moth,
    Wang Y; Harrison RL; Shi J
    Insects; 2021 Feb; 12(2):. PubMed ID: 33671230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Foliar nitrogen concentrations and natural abundance of (15)N suggest nitrogen allocation patterns of Douglas-fir and mycorrhizal fungi during development in elevated carbon dioxide concentration and temperature.
    Hobbie EA; Olszyk DM; Rygiewicz PT; Tingey DT; Johnson MG
    Tree Physiol; 2001 Sep; 21(15):1113-22. PubMed ID: 11581018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of Survival and Development of Gypsy Moth
    Keena MA; Richards JY
    Insects; 2020 Apr; 11(4):. PubMed ID: 32344583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of enriched CO
    Fajer ED
    Oecologia; 1989 Dec; 81(4):514-520. PubMed ID: 28312647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of dietary allelochemicals on gypsy moth (Lymantria dispar) caterpillars: importance of midgut alkalinity.
    Appel HM; Schultz JC; Govenor HL
    J Insect Physiol; 1997 Nov; 43(12):1169-1175. PubMed ID: 12770489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of host switching on gypsy moth (Lymantria dispar (L.)) under field conditions.
    Stoyenoff JL; Witter JA; Montgomery ME; Chilcote CA
    Oecologia; 1994 Mar; 97(2):143-157. PubMed ID: 28313923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.