These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 24249275)
1. Simultaneous and independent effects of abscisic acid on stomata and the photosynthetic apparatus in whole leaves. Raschke K; Hedrich R Planta; 1985 Jan; 163(1):105-18. PubMed ID: 24249275 [TBL] [Abstract][Full Text] [Related]
2. Effects of abscisic acid on photosynthesis in whole leaves: changes in CO2 assimilation, levels of carbon-reduction-cycle intermediates, and activity of ribulose-1,5-bisphosphate carboxylase. Fischer E; Raschke K; Stitt M Planta; 1986 Dec; 169(4):536-45. PubMed ID: 24232762 [TBL] [Abstract][Full Text] [Related]
3. Simultaneous requirement of carbon dioxide and abscisic acid for stomatal closing in Xanthium strumarium L. Raschke K Planta; 1975 Jan; 125(3):243-59. PubMed ID: 24435438 [TBL] [Abstract][Full Text] [Related]
4. Very high CO2 partially restores photosynthesis in sunflower at low water potentials. Graan T; Boyer JS Planta; 1990 Jun; 181(3):378-84. PubMed ID: 24196816 [TBL] [Abstract][Full Text] [Related]
5. Effect of abscisic Acid on the gain of the feedback loop involving carbon dioxide and stomata. Dubbe DR; Farquhar GD; Raschke K Plant Physiol; 1978 Sep; 62(3):413-7. PubMed ID: 16660528 [TBL] [Abstract][Full Text] [Related]
6. The stomata of the fern Adiantum capillus-veneris do not respond to CO2 in the dark and open by photosynthesis in guard cells. Doi M; Shimazaki K Plant Physiol; 2008 Jun; 147(2):922-30. PubMed ID: 18467462 [TBL] [Abstract][Full Text] [Related]
7. Rate of stomatal opening, shoot hydraulic conductance and photosynthetic characteristics in relation to leaf abscisic acid concentration in six temperate deciduous trees. Aasamaa K; Sõber A; Hartung W; Niinemets U Tree Physiol; 2002 Mar; 22(4):267-76. PubMed ID: 11874723 [TBL] [Abstract][Full Text] [Related]
8. Separation and measurement of direct and indirect effects of light on stomata. Sharkey TD; Raschke K Plant Physiol; 1981 Jul; 68(1):33-40. PubMed ID: 16661884 [TBL] [Abstract][Full Text] [Related]
9. High Stomatal Conductance in the Tomato Kaiser E; Morales A; Harbinson J; Heuvelink E; Marcelis LFM Front Plant Sci; 2020; 11():1317. PubMed ID: 32983206 [TBL] [Abstract][Full Text] [Related]
10. Effect of temperature on net CO2 assimilation and photosystem II quantum yield of electron transfer of French bean (Phaseolus vulgaris L.) leaves during drought stress. Cornic G; Ghashghaie J Planta; 1991 Sep; 185(2):255-60. PubMed ID: 24186349 [TBL] [Abstract][Full Text] [Related]
11. Intact leaf gas exchange provides a robust method for measuring the kinetics of stomatal conductance responses to abscisic acid and other small molecules in Ceciliato PHO; Zhang J; Liu Q; Shen X; Hu H; Liu C; Schäffner AR; Schroeder JI Plant Methods; 2019; 15():38. PubMed ID: 31019545 [TBL] [Abstract][Full Text] [Related]
12. Are diurnal patterns of stomatal movement the result of alternating metabolism of endogenous guard cell ABA and accumulation of ABA delivered to the apoplast around guard cells by transpiration? Tallman G J Exp Bot; 2004 Sep; 55(405):1963-76. PubMed ID: 15310824 [TBL] [Abstract][Full Text] [Related]
13. Effects of instantaneous and growth CO Mizokami Y; Noguchi K; Kojima M; Sakakibara H; Terashima I Plant Cell Environ; 2019 Apr; 42(4):1257-1269. PubMed ID: 30468514 [TBL] [Abstract][Full Text] [Related]
14. Responses to water stress in an ABA-unresponsive hybrid poplar (Populus koreana×trichocarpa cv. Peace) III. Consequences for photosynthetic carbon assimilation. Ridolfi M; Dreyer E New Phytol; 1997 Jan; 135(1):31-40. PubMed ID: 33863146 [TBL] [Abstract][Full Text] [Related]
15. Sensitivity of Stomata to Abscisic Acid (An Effect of the Mesophyll). Trejo CL; Davies WJ; Ruiz L Plant Physiol; 1993 Jun; 102(2):497-502. PubMed ID: 12231838 [TBL] [Abstract][Full Text] [Related]
16. Stomatal patchiness in Mediterranean evergreen sclerophylls : Phenomenology and consequences for the interpretation of the midday depression in photosynthesis and transpiration. Beyschlag W; Pfanz H; Ryel RJ Planta; 1992 Jul; 187(4):546-53. PubMed ID: 24178151 [TBL] [Abstract][Full Text] [Related]
17. The midday depression of CO2 assimilation in leaves of Arbutus unedo L.: diurnal changes in photosynthetic capacity related to changes in temperature and humidity. Raschke K; Resemann A Planta; 1986 Sep; 168(4):546-58. PubMed ID: 24232332 [TBL] [Abstract][Full Text] [Related]
18. Carbon dioxide diffusion across stomata and mesophyll and photo-biochemical processes as affected by growth CO2 and phosphorus nutrition in cotton. Singh SK; Badgujar G; Reddy VR; Fleisher DH; Bunce JA J Plant Physiol; 2013 Jun; 170(9):801-13. PubMed ID: 23384758 [TBL] [Abstract][Full Text] [Related]
19. Intrinsic non-stomatal resilience to drought of the photosynthetic apparatus in Coffea spp. is strengthened by elevated air [CO2]. Semedo JN; Rodrigues AP; Lidon FC; Pais IP; Marques I; Gouveia D; Armengaud J; Silva MJ; Martins S; Semedo MC; Dubberstein D; Partelli FL; Reboredo FH; Scotti-Campos P; Ribeiro-Barros AI; DaMatta FM; Ramalho JC Tree Physiol; 2021 May; 41(5):708-727. PubMed ID: 33215189 [TBL] [Abstract][Full Text] [Related]
20. The efficiency of water use in water stressed plants is increased due to ABA induced stomatal closure. Steuer B; Stuhlfauth T; Fock HP Photosynth Res; 1988 Nov; 18(3):327-36. PubMed ID: 24425243 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]