BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 24250750)

  • 1. Primary 1,25-dihydroxyvitamin D3 response of the interleukin 8 gene cluster in human monocyte- and macrophage-like cells.
    Ryynänen J; Carlberg C
    PLoS One; 2013; 8(10):e78170. PubMed ID: 24250750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of 1α,25-dihydroxyvitamin D3-dependent chromatin accessibility of early vitamin D receptor target genes.
    Seuter S; Pehkonen P; Heikkinen S; Carlberg C
    Biochim Biophys Acta; 2013 Dec; 1829(12):1266-75. PubMed ID: 24185200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The ASAP2 gene is a primary target of 1,25-dihydroxyvitamin D3 in human monocytes and macrophages.
    Seuter S; Ryynänen J; Carlberg C
    J Steroid Biochem Mol Biol; 2014 Oct; 144 Pt A():12-8. PubMed ID: 23999061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 1,25-Dihydroxyvitamin D3 up-regulates TLR10 while down-regulating TLR2, 4, and 5 in human monocyte THP-1.
    Verma R; Jung JH; Kim JY
    J Steroid Biochem Mol Biol; 2014 May; 141():1-6. PubMed ID: 24373795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of genomic vitamin D receptor binding sites through chromatin looping and opening.
    Seuter S; Neme A; Carlberg C
    PLoS One; 2014; 9(4):e96184. PubMed ID: 24763502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vitamin D-dependent chromatin association of CTCF in human monocytes.
    Neme A; Seuter S; Carlberg C
    Biochim Biophys Acta; 2016 Nov; 1859(11):1380-1388. PubMed ID: 27569350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The vitamin D-dependent transcriptome of human monocytes.
    Neme A; Nurminen V; Seuter S; Carlberg C
    J Steroid Biochem Mol Biol; 2016 Nov; 164():180-187. PubMed ID: 26523676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epigenome-wide effects of vitamin D and their impact on the transcriptome of human monocytes involve CTCF.
    Seuter S; Neme A; Carlberg C
    Nucleic Acids Res; 2016 May; 44(9):4090-104. PubMed ID: 26715761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The transcriptional regulator BCL6 participates in the secondary gene regulatory response to vitamin D.
    Nurminen V; Neme A; Ryynänen J; Heikkinen S; Seuter S; Carlberg C
    Biochim Biophys Acta; 2015 Mar; 1849(3):300-8. PubMed ID: 25482012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 1,25-dihydroxyvitamin D3 production and vitamin D3 receptor expression are developmentally regulated during differentiation of human monocytes into macrophages.
    Kreutz M; Andreesen R; Krause SW; Szabo A; Ritz E; Reichel H
    Blood; 1993 Aug; 82(4):1300-7. PubMed ID: 8394753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for 1,25-dihydroxyvitamin D3-independent transactivation by the vitamin D receptor: uncoupling the receptor and ligand in keratinocytes.
    Ellison TI; Eckert RL; MacDonald PN
    J Biol Chem; 2007 Apr; 282(15):10953-62. PubMed ID: 17310066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 1,25-Dihydroxyvitamin D3 stimulates cyclic vitamin D receptor/retinoid X receptor DNA-binding, co-activator recruitment, and histone acetylation in intact osteoblasts.
    Kim S; Shevde NK; Pike JW
    J Bone Miner Res; 2005 Feb; 20(2):305-17. PubMed ID: 15647825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The impact of the vitamin D-modulated epigenome on VDR target gene regulation.
    Nurminen V; Neme A; Seuter S; Carlberg C
    Biochim Biophys Acta Gene Regul Mech; 2018 Aug; 1861(8):697-705. PubMed ID: 30018005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular endocrinology of vitamin D on the epigenome level.
    Carlberg C
    Mol Cell Endocrinol; 2017 Sep; 453():14-21. PubMed ID: 28315703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The human peroxisome proliferator-activated receptor delta gene is a primary target of 1alpha,25-dihydroxyvitamin D3 and its nuclear receptor.
    Dunlop TW; Väisänen S; Frank C; Molnár F; Sinkkonen L; Carlberg C
    J Mol Biol; 2005 Jun; 349(2):248-60. PubMed ID: 15890193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potent vitamin D3 analogs: their abilities to enhance transactivation and to bind to the vitamin D3 response element.
    Imai Y; Pike JW; Koeffler HP
    Leuk Res; 1995 Mar; 19(3):147-58. PubMed ID: 7700077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lymphocyte cell lines from vitamin D-dependent rickets type II show functional defects in the 1 alpha,25-dihydroxyvitamin D3 receptor.
    Koeffler HP; Bishop JE; Reichel H; Singer F; Nagler A; Tobler A; Walka M; Norman AW
    Mol Cell Endocrinol; 1990 Mar; 70(1):1-11. PubMed ID: 2160380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. What do we learn from the genome-wide perspective on vitamin D3?
    Carlberg C
    Anticancer Res; 2015 Feb; 35(2):1143-51. PubMed ID: 25667505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide (over)view on the actions of vitamin D.
    Carlberg C
    Front Physiol; 2014; 5():167. PubMed ID: 24808867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancers located within two introns of the vitamin D receptor gene mediate transcriptional autoregulation by 1,25-dihydroxyvitamin D3.
    Zella LA; Kim S; Shevde NK; Pike JW
    Mol Endocrinol; 2006 Jun; 20(6):1231-47. PubMed ID: 16497728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.