These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 2425095)

  • 1. Ionic channels formed by Staphylococcus aureus alpha-toxin: voltage-dependent inhibition by divalent and trivalent cations.
    Menestrina G
    J Membr Biol; 1986; 90(2):177-90. PubMed ID: 2425095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The ionic channels formed by cholera toxin in planar bilayer lipid membranes are entirely attributable to its B-subunit.
    Krasilnikov OV; Muratkhodjaev JN; Voronov SE; Yezepchuk YV
    Biochim Biophys Acta; 1991 Aug; 1067(2):166-70. PubMed ID: 1715187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diversity of amyloid beta protein fragment [1-40]-formed channels.
    Kourie JI; Henry CL; Farrelly P
    Cell Mol Neurobiol; 2001 Jun; 21(3):255-84. PubMed ID: 11569537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Divalent cation conduction in the ryanodine receptor channel of sheep cardiac muscle sarcoplasmic reticulum.
    Tinker A; Williams AJ
    J Gen Physiol; 1992 Sep; 100(3):479-93. PubMed ID: 1279095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions between divalent cations and the gating machinery of cyclic GMP-activated channels in salamander retinal rods.
    Karpen JW; Brown RL; Stryer L; Baylor DA
    J Gen Physiol; 1993 Jan; 101(1):1-25. PubMed ID: 7679715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aerolysin of Aeromonas sobria: evidence for formation of ion-permeable channels and comparison with alpha-toxin of Staphylococcus aureus.
    Chakraborty T; Schmid A; Notermans S; Benz R
    Infect Immun; 1990 Jul; 58(7):2127-32. PubMed ID: 1694819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ion channels in the chloroplast envelope membrane.
    Heiber T; Steinkamp T; Hinnah S; Schwarz M; Flügge UI; Weber A; Wagner R
    Biochemistry; 1995 Dec; 34(49):15906-17. PubMed ID: 8519747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Properties of three different ion channels in the plasma membrane of the slime mold Dictyostelium discoideum.
    Müller U; Hartung K
    Biochim Biophys Acta; 1990 Jul; 1026(2):204-12. PubMed ID: 1696127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstitution in planar lipid bilayers of a Ca2+-dependent K+ channel from transverse tubule membranes isolated from rabbit skeletal muscle.
    Latorre R; Vergara C; Hidalgo C
    Proc Natl Acad Sci U S A; 1982 Feb; 79(3):805-9. PubMed ID: 6278496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heparin influence on alpha-staphylotoxin formed channel.
    Krasilnikov OV; Merzlyak PG; Yuldasheva LN; Rodrigues CG; Nogueira RA
    Biochim Biophys Acta; 1999 Feb; 1417(1):167-82. PubMed ID: 10076045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-selective conductance in calcium channels of frog muscle: calcium selectivity in a single-file pore.
    Almers W; McCleskey EW
    J Physiol; 1984 Aug; 353():585-608. PubMed ID: 6090646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The dependence of the conductance of the hemocyanin channel on applied potential and ionic concentration with mono- and divalent cations.
    Menestrina G; Antolini R
    Biochim Biophys Acta; 1982 Jun; 688(3):673-84. PubMed ID: 6288088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Properties of ion channels formed by Staphylococcus aureus delta-toxin.
    Mellor IR; Thomas DH; Sansom MS
    Biochim Biophys Acta; 1988 Jul; 942(2):280-94. PubMed ID: 2456097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface potential reflected in both gating and permeation mechanisms of sodium and calcium channels of the tunicate egg cell membrane.
    Ohmori H; Yoshii M
    J Physiol; 1977 May; 267(2):429-63. PubMed ID: 17734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the channel properties of tetanus toxin in planar lipid bilayers.
    Gambale F; Montal M
    Biophys J; 1988 May; 53(5):771-83. PubMed ID: 2455552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emerging issues of connexin channels: biophysics fills the gap.
    Harris AL
    Q Rev Biophys; 2001 Aug; 34(3):325-472. PubMed ID: 11838236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Currents carried by monovalent cations through calcium channels in mouse neoplastic B lymphocytes.
    Fukushima Y; Hagiwara S
    J Physiol; 1985 Jan; 358():255-84. PubMed ID: 2580082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Properties and modulation of alpha human atrial natriuretic peptide (alpha-hANP)-formed ion channels.
    Kourie JI; Hanna EA; Henry CL
    Can J Physiol Pharmacol; 2001 Aug; 79(8):654-64. PubMed ID: 11558674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Voltage-dependent channel formation by rods of helical polypeptides.
    Menestrina G; Voges KP; Jung G; Boheim G
    J Membr Biol; 1986; 93(2):111-32. PubMed ID: 2433450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of Clostridium botulinum C2 toxin with lipid bilayer membranes. Formation of cation-selective channels and inhibition of channel function by chloroquine.
    Schmid A; Benz R; Just I; Aktories K
    J Biol Chem; 1994 Jun; 269(24):16706-11. PubMed ID: 7515883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.