BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 24251099)

  • 1. NAD-dependent lactate dehydrogenase catalyses the first step in respiratory utilization of lactate by Lactococcus lactis.
    Zhao R; Zheng S; Duan C; Liu F; Yang L; Huo G
    FEBS Open Bio; 2013; 3():379-86. PubMed ID: 24251099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The bacterial-like lactate shuttle components from heterotrophic Euglena gracilis.
    Jasso-Chávez R; García-Cano I; Marín-Hernández A; Mendoza-Cózatl D; Rendón JL; Moreno-Sánchez R
    Biochim Biophys Acta; 2005 Sep; 1709(2):181-90. PubMed ID: 16112076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple lactate dehydrogenase activities of the rumen bacterium Selenomonas ruminantium.
    Gilmour M; Flint HJ; Mitchell WJ
    Microbiology (Reading); 1994 Aug; 140 ( Pt 8)():2077-84. PubMed ID: 7921257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Bacterial Multidomain NAD-Independent d-Lactate Dehydrogenase Utilizes Flavin Adenine Dinucleotide and Fe-S Clusters as Cofactors and Quinone as an Electron Acceptor for d-Lactate Oxidization.
    Jiang T; Guo X; Yan J; Zhang Y; Wang Y; Zhang M; Sheng B; Ma C; Xu P; Gao C
    J Bacteriol; 2017 Nov; 199(22):. PubMed ID: 28847921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NAD-Independent L-Lactate Dehydrogenase Required for L-Lactate Utilization in Pseudomonas stutzeri A1501.
    Gao C; Wang Y; Zhang Y; Lv M; Dou P; Xu P; Ma C
    J Bacteriol; 2015 Jul; 197(13):2239-2247. PubMed ID: 25917905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NAD-independent lactate and butyryl-CoA dehydrogenases of Clostridium acetobutylicum P262.
    Diez-Gonzalez F; Russell JB; Hunter JB
    Curr Microbiol; 1997 Mar; 34(3):162-6. PubMed ID: 9009069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and properties of Lactococcus lactis subsp. lactis biovar diacetylactis CNRZ 483 mutants producing diacetyl and acetoin from glucose.
    Boumerdassi H; Monnet C; Desmazeaud M; Corrieu G
    Appl Environ Microbiol; 1997 Jun; 63(6):2293-9. PubMed ID: 9172349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pyridine Nucleotide-Linked Lactate Dehydrogenase of Tetrahymena: Evidence for D- and L-Enzymes in the Mitochondria.
    Stearns FM; Eichel HJ
    J Eukaryot Microbiol; 2021 May; 68(3):e12851. PubMed ID: 33749960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytosol-mitochondria transfer of reducing equivalents by a lactate shuttle in heterotrophic Euglena.
    Jasso-Chávez R; Moreno-Sánchez R
    Eur J Biochem; 2003 Dec; 270(24):4942-51. PubMed ID: 14653820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic characterization of recombinant Bacillus coagulans FDP-activated l-lactate dehydrogenase expressed in Escherichia coli and its substrate specificity.
    Jiang T; Xu Y; Sun X; Zheng Z; Ouyang J
    Protein Expr Purif; 2014 Mar; 95():219-25. PubMed ID: 24412354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acetoin Fermentation by Citrate-Positive Lactococcus lactis subsp. lactis 3022 Grown Aerobically in the Presence of Hemin or Cu.
    Kaneko T; Takahashi M; Suzuki H
    Appl Environ Microbiol; 1990 Sep; 56(9):2644-9. PubMed ID: 16348274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cofactor engineering: a novel approach to metabolic engineering in Lactococcus lactis by controlled expression of NADH oxidase.
    Lopez de Felipe F; Kleerebezem M; de Vos WM; Hugenholtz J
    J Bacteriol; 1998 Aug; 180(15):3804-8. PubMed ID: 9683475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Suppression of lactate production by aerobic fed-batch cultures of Lactococcus lactis.
    Sano A; Takatera M; Kawai M; Ichinose R; Yamasaki-Yashiki S; Katakura Y
    J Biosci Bioeng; 2020 Oct; 130(4):402-408. PubMed ID: 32669208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of the shift from homolactic acid to mixed-acid fermentation in Lactococcus lactis: predominant role of the NADH/NAD+ ratio.
    Garrigues C; Loubiere P; Lindley ND; Cocaign-Bousquet M
    J Bacteriol; 1997 Sep; 179(17):5282-7. PubMed ID: 9286977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redirection of pyruvate catabolism in Lactococcus lactis by selection of mutants with additional growth requirements.
    Henriksen CM; Nilsson D
    Appl Microbiol Biotechnol; 2001 Sep; 56(5-6):767-75. PubMed ID: 11601628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High yields of 2,3-butanediol and mannitol in Lactococcus lactis through engineering of NAD⁺ cofactor recycling.
    Gaspar P; Neves AR; Gasson MJ; Shearman CA; Santos H
    Appl Environ Microbiol; 2011 Oct; 77(19):6826-35. PubMed ID: 21841021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fine tuning of the lactate and diacetyl production through promoter engineering in Lactococcus lactis.
    Guo T; Kong J; Zhang L; Zhang C; Hu S
    PLoS One; 2012; 7(4):e36296. PubMed ID: 22558426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic characterization of Lactococcus lactis deficient in lactate dehydrogenase using in vivo 13C-NMR.
    Neves AR; Ramos A; Shearman C; Gasson MJ; Almeida JS; Santos H
    Eur J Biochem; 2000 Jun; 267(12):3859-68. PubMed ID: 10849005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Is the glycolytic flux in Lactococcus lactis primarily controlled by the redox charge? Kinetics of NAD(+) and NADH pools determined in vivo by 13C NMR.
    Neves AR; Ventura R; Mansour N; Shearman C; Gasson MJ; Maycock C; Ramos A; Santos H
    J Biol Chem; 2002 Aug; 277(31):28088-98. PubMed ID: 12011086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of the diacetyl/acetoin pathway in Lactococcus lactis subsp. lactis bv. diacetylactis CRL264 by acidic growth.
    García-Quintáns N; Repizo G; Martín M; Magni C; López P
    Appl Environ Microbiol; 2008 Apr; 74(7):1988-96. PubMed ID: 18245243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.