BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 24251099)

  • 21. Respiratory Physiology of Lactococcus lactis in Chemostat Cultures and Its Effect on Cellular Robustness in Frozen and Freeze-Dried Starter Cultures.
    Johanson A; Goel A; Olsson L; Franzén CJ
    Appl Environ Microbiol; 2020 Mar; 86(6):. PubMed ID: 31953330
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fructose 1,6-diphosphate-activated L-lactate dehydrogenase from Streptococcus lactis: kinetic properties and factors affecting activation.
    Crow VL; Pritchard GG
    J Bacteriol; 1977 Jul; 131(1):82-91. PubMed ID: 17595
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cloning, nucleotide sequence, expression, and chromosomal location of ldh, the gene encoding L-(+)-lactate dehydrogenase, from Lactococcus lactis.
    Llanos RM; Hillier AJ; Davidson BE
    J Bacteriol; 1992 Nov; 174(21):6956-64. PubMed ID: 1400245
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hyaluronan production and molecular weight is enhanced in pathway-engineered strains of lactate dehydrogenase-deficient
    Kaur M; Jayaraman G
    Metab Eng Commun; 2016 Dec; 3():15-23. PubMed ID: 29468110
    [TBL] [Abstract][Full Text] [Related]  

  • 25. NAD-independent L-lactate dehydrogenase is required for L-lactate utilization in Pseudomonas stutzeri SDM.
    Gao C; Jiang T; Dou P; Ma C; Li L; Kong J; Xu P
    PLoS One; 2012; 7(5):e36519. PubMed ID: 22574176
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analysis of hemin effect on lactate reduction in Lactococcus lactis.
    Nagayasu M; Wardani AK; Nagahisa K; Shimizu H; Shioya S
    J Biosci Bioeng; 2007 Jun; 103(6):529-34. PubMed ID: 17630124
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Acid tolerance of lactate-utilizing bacteria of the order Bacteroidales contributes to prevention of ruminal acidosis in goats adapted to a high-concentrate diet.
    Lu Z; Kong L; Ren S; Aschenbach JR; Shen H
    Anim Nutr; 2023 Sep; 14():130-140. PubMed ID: 37397354
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The D-2-hydroxyacid dehydrogenase incorrectly annotated PanE is the sole reduction system for branched-chain 2-keto acids in Lactococcus lactis.
    Chambellon E; Rijnen L; Lorquet F; Gitton C; van Hylckama Vlieg JE; Wouters JA; Yvon M
    J Bacteriol; 2009 Feb; 191(3):873-81. PubMed ID: 19047348
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Conversion of Lactococcus lactis from homolactic to homoalanine fermentation through metabolic engineering.
    Hols P; Kleerebezem M; Schanck AN; Ferain T; Hugenholtz J; Delcour J; de Vos WM
    Nat Biotechnol; 1999 Jun; 17(6):588-92. PubMed ID: 10385325
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reappraisal of the regulation of lactococcal L-lactate dehydrogenase.
    van Niel EW; Palmfeldt J; Martin R; Paese M; Hahn-Hägerdal B
    Appl Environ Microbiol; 2004 Mar; 70(3):1843-6. PubMed ID: 15006814
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exploitation of the broad specificity of the membrane-bound isoenzyme of lactate dehydrogenase for direct selection of null mutants in Neisseria gonorrhoeae.
    Hendry AT; Bhatnagar RK; Shanmugam KT; Jensen RA
    J Gen Microbiol; 1990 Jan; 136(1):45-50. PubMed ID: 2112587
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cloning, sequencing and comparison of three lactococcal L-lactate dehydrogenase genes.
    Swindell SR; Griffin HG; Gasson MJ
    Microbiology (Reading); 1994 Jun; 140 ( Pt 6)():1301-5. PubMed ID: 8081494
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lactate oxidation in Paracoccus denitrificans.
    Kim G; Covian R; Edwards L; He Y; Balaban RS; Levine RL
    Arch Biochem Biophys; 2024 Jun; 756():109988. PubMed ID: 38631502
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Citrate uptake in exchange with intermediates in the citrate metabolic pathway in Lactococcus lactis IL1403.
    Pudlik AM; Lolkema JS
    J Bacteriol; 2011 Feb; 193(3):706-14. PubMed ID: 21115655
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kinetics of Lactococcus lactis growth and metabolite formation under aerobic and anaerobic conditions in the presence or absence of hemin.
    Lan CQ; Oddone G; Mills DA; Block DE
    Biotechnol Bioeng; 2006 Dec; 95(6):1070-80. PubMed ID: 16807924
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pyruvate metabolism in Lactococcus lactis is dependent upon glyceraldehyde-3-phosphate dehydrogenase activity.
    Even S; Garrigues C; Loubiere P; Lindley ND; Cocaign-Bousquet M
    Metab Eng; 1999 Jul; 1(3):198-205. PubMed ID: 10937934
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lactate utilization is regulated by the FadR-type regulator LldR in Pseudomonas aeruginosa.
    Gao C; Hu C; Zheng Z; Ma C; Jiang T; Dou P; Zhang W; Che B; Wang Y; Lv M; Xu P
    J Bacteriol; 2012 May; 194(10):2687-92. PubMed ID: 22408166
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Glucose metabolism and regulation of glycolysis in Lactococcus lactis strains with decreased lactate dehydrogenase activity.
    Garrigues C; Goupil-Feuillerat N; Cocaign-Bousquet M; Renault P; Lindley ND; Loubiere P
    Metab Eng; 2001 Jul; 3(3):211-7. PubMed ID: 11461143
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lactate dehydrogenase isoenzymes of sperm cells and tests.
    Clausen J
    Biochem J; 1969 Jan; 111(2):207-18. PubMed ID: 4303363
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The pool of ADP and ATP regulates anaerobic product formation in resting cells of Lactococcus lactis.
    Palmfeldt J; Paese M; Hahn-Hägerdal B; Van Niel EW
    Appl Environ Microbiol; 2004 Sep; 70(9):5477-84. PubMed ID: 15345435
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.