BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 24251349)

  • 1. Direct imaging of nanoscale dissolution of dicalcium phosphate dihydrate by an organic ligand: concentration matters.
    Qin L; Zhang W; Lu J; Stack AG; Wang L
    Environ Sci Technol; 2013; 47(23):13365-74. PubMed ID: 24251349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissolution and Precipitation Dynamics at Environmental Mineral Interfaces Imaged by In Situ Atomic Force Microscopy.
    Wang L; Putnis CV
    Acc Chem Res; 2020 Jun; 53(6):1196-1205. PubMed ID: 32441501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of calcium phosphate nucleation and growth on calcite: implications for predicting the fate of dissolved phosphate species in alkaline soils.
    Wang L; Ruiz-Agudo E; Putnis CV; Menneken M; Putnis A
    Environ Sci Technol; 2012 Jan; 46(2):834-42. PubMed ID: 22136106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of Modulation of Calcium Phosphate Pathological Mineralization by Mobile and Immobile Small-Molecule Inhibitors.
    Li M; Zhang J; Wang L; Wang B; Putnis CV
    J Phys Chem B; 2018 Feb; 122(5):1580-1587. PubMed ID: 29346735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct Observation of Simultaneous Immobilization of Cadmium and Arsenate at the Brushite-Fluid Interface.
    Zhai H; Wang L; Qin L; Zhang W; Putnis CV; Putnis A
    Environ Sci Technol; 2018 Mar; 52(6):3493-3502. PubMed ID: 29488373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct observations of nanoscale brushite dissolution by the concentration-dependent adsorption of phosphate or phytate.
    Ge X; Fan Y; Zhai H; Chi J; Putnis CV; Wang L; Zhang W
    Water Res; 2024 Jan; 248():120851. PubMed ID: 37976955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ imaging of interfacial precipitation of phosphate on Goethite.
    Wang L; Putnis CV; Ruiz-Agudo E; Hövelmann J; Putnis A
    Environ Sci Technol; 2015 Apr; 49(7):4184-92. PubMed ID: 25763812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mobilization and acquisition of sparingly soluble P-Sources by Brassica cultivars under P-starved environment II. Rhizospheric pH changes, redesigned root architecture and pi-uptake kinetics.
    Akhtar MS; Oki Y; Adachi T
    J Integr Plant Biol; 2009 Nov; 51(11):1024-39. PubMed ID: 19903224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupled dissolution and precipitation at the cerussite-phosphate solution interface: implications for immobilization of lead in soils.
    Wang L; Putnis CV; Ruiz-Agudo E; King HE; Putnis A
    Environ Sci Technol; 2013; 47(23):13502-10. PubMed ID: 24228938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of Spiral Growth and Dissolution at the Brushite (010) Interface by Chondroitin 4-Sulfate.
    Zhai H; Wang L; Putnis CV
    J Phys Chem B; 2019 Jan; 123(4):845-851. PubMed ID: 30615454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Humic Acids Limit the Precipitation of Cadmium and Arsenate at the Brushite-Fluid Interface.
    Zhai H; Wang L; Hövelmann J; Qin L; Zhang W; Putnis CV
    Environ Sci Technol; 2019 Jan; 53(1):194-202. PubMed ID: 30516375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Organic ligand-induced dissolution kinetics of antimony trioxide.
    Hu X; He M
    J Environ Sci (China); 2017 Jun; 56():87-94. PubMed ID: 28571874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissolution of mimetite Pb5(AsO4)3Cl in low-molecular-weight organic acids and EDTA.
    Bajda T
    Chemosphere; 2011 Jun; 83(11):1493-501. PubMed ID: 21345478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved dissolution and absorption of ketoconazole in the presence of organic acids as pH-modifiers.
    Adachi M; Hinatsu Y; Kusamori K; Katsumi H; Sakane T; Nakatani M; Wada K; Yamamoto A
    Eur J Pharm Sci; 2015 Aug; 76():225-30. PubMed ID: 25988287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of citrate and NaCl on size, morphology, crystallinity and microstructure of calcium phosphates obtained from aqueous solutions at acidic or near-neutral pH.
    Mekmene O; Rouillon T; Quillard S; Pilet P; Bouler JM; Pezennec S; Gaucheron F
    J Dairy Res; 2012 May; 79(2):238-48. PubMed ID: 22559064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Constant composition dissolution of mixed phases. II. Selective dissolution of calcium phosphates.
    Tang R; Hass M; Wu W; Gulde S; Nancollas GH
    J Colloid Interface Sci; 2003 Apr; 260(2):379-84. PubMed ID: 12686190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergistic use of siderophores and weak organic ligands during zinc transport in the rhizosphere controlled by pH and ion strength gradients.
    Northover GHR; Mao Y; Blasco S; Vilar R; Garcia-España E; Rocco C; Hanif M; Weiss DJ
    Sci Rep; 2022 Apr; 12(1):6774. PubMed ID: 35474082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Remineralization of enamel subsurface lesions by casein phosphopeptide-stabilized calcium phosphate solutions.
    Reynolds EC
    J Dent Res; 1997 Sep; 76(9):1587-95. PubMed ID: 9294493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissolution kinetics of a lunar glass simulant at 25 degrees C: the effect of pH and organic acids.
    Eick MJ; Grossl PR; Golden DC; Sparks DL; Ming DW
    Geochim Cosmochim Acta; 1996 Jan; 60(1):157-70. PubMed ID: 11541298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of several organic acids on phosphate adsorption by variable charge soils of central China.
    Hu HQ; He JZ; Li XY; Liu F
    Environ Int; 2001 May; 26(5-6):353-8. PubMed ID: 11392751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.