These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 24251550)

  • 1. Development of an effective polarizable bond method for biomolecular simulation.
    Xiao X; Zhu T; Ji CG; Zhang JZ
    J Phys Chem B; 2013 Dec; 117(48):14885-93. PubMed ID: 24251550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Some practical approaches to treating electrostatic polarization of proteins.
    Ji C; Mei Y
    Acc Chem Res; 2014 Sep; 47(9):2795-803. PubMed ID: 24883956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CHARMM fluctuating charge force field for proteins: II protein/solvent properties from molecular dynamics simulations using a nonadditive electrostatic model.
    Patel S; Mackerell AD; Brooks CL
    J Comput Chem; 2004 Sep; 25(12):1504-14. PubMed ID: 15224394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct folding simulation of helical proteins using an effective polarizable bond force field.
    Duan L; Zhu T; Ji C; Zhang Q; Zhang JZH
    Phys Chem Chem Phys; 2017 Jun; 19(23):15273-15284. PubMed ID: 28569909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Communication: Quantum polarized fluctuating charge model: a practical method to include ligand polarizability in biomolecular simulations.
    Kimura SR; Rajamani R; Langley DR
    J Chem Phys; 2011 Dec; 135(23):231101. PubMed ID: 22191857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calculation of the free energy of polarization: quantifying the effect of explicitly treating electronic polarization on the transferability of force-field parameters.
    Geerke DP; van Gunsteren WF
    J Phys Chem B; 2007 Jun; 111(23):6425-36. PubMed ID: 17508737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the structure of ionic liquids: comparisons between electronically polarizable and nonpolarizable models I.
    Yan T; Wang Y; Knox C
    J Phys Chem B; 2010 May; 114(20):6905-21. PubMed ID: 20443607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulation of NMR data reveals that proteins' local structures are stabilized by electronic polarization.
    Tong Y; Ji CG; Mei Y; Zhang JZ
    J Am Chem Soc; 2009 Jun; 131(24):8636-41. PubMed ID: 19485377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure, thermodynamics, and liquid-vapor equilibrium of ethanol from molecular-dynamics simulations using nonadditive interactions.
    Patel S; Brooks CL
    J Chem Phys; 2005 Oct; 123(16):164502. PubMed ID: 16268707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the dynamics of ionic liquids: comparisons between electronically polarizable and nonpolarizable models II.
    Yan T; Wang Y; Knox C
    J Phys Chem B; 2010 May; 114(20):6886-904. PubMed ID: 20443608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational Study of PCSK9-EGFA Complex with Effective Polarizable Bond Force Field.
    Chen J; Duan L; Ji C; Zhang JZH
    Front Mol Biosci; 2017; 4():101. PubMed ID: 29379787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Classical and quantum mechanical/molecular mechanical molecular dynamics simulations of alanine dipeptide in water: comparisons with IR and vibrational circular dichroism spectra.
    Kwac K; Lee KK; Han JB; Oh KI; Cho M
    J Chem Phys; 2008 Mar; 128(10):105106. PubMed ID: 18345930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics simulations of peptides and proteins with a continuum electrostatic model based on screened Coulomb potentials.
    Hassan SA; Mehler EL; Zhang D; Weinstein H
    Proteins; 2003 Apr; 51(1):109-25. PubMed ID: 12596268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of select polarizable and non-polarizable water models in predicting solvation dynamics of water confined between MgO slabs.
    Kamath G; Deshmukh SA; Sankaranarayanan SK
    J Phys Condens Matter; 2013 Jul; 25(30):305003. PubMed ID: 23819970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A force consistent method for electrostatic energy calculation in fluctuating charge model.
    Duan G; Ji C; Zhang JZH
    J Chem Phys; 2019 Sep; 151(9):094105. PubMed ID: 31492061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new force field (ECEPP-05) for peptides, proteins, and organic molecules.
    Arnautova YA; Jagielska A; Scheraga HA
    J Phys Chem B; 2006 Mar; 110(10):5025-44. PubMed ID: 16526746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A polarizable empirical force field for molecular dynamics simulation of liquid hydrocarbons.
    Szklarczyk OM; Bachmann SJ; van Gunsteren WF
    J Comput Chem; 2014 Apr; 35(10):789-801. PubMed ID: 26248885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developing an effective polarizable bond method for small molecules with application to optimized molecular docking.
    Duan G; Ji C; Zhang JZH
    RSC Adv; 2020 Apr; 10(26):15530-15540. PubMed ID: 35495446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient Simulation Method for Polarizable Protein Force Fields:  Application to the Simulation of BPTI in Liquid Water.
    Harder E; Kim B; Friesner RA; Berne BJ
    J Chem Theory Comput; 2005 Jan; 1(1):169-80. PubMed ID: 26641127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polarizable molecular dynamics simulations of aqueous dipeptides.
    Kucukkal TG; Stuart SJ
    J Phys Chem B; 2012 Aug; 116(30):8733-40. PubMed ID: 22747103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.