These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 24251551)
1. Structure of MurNAc 6-phosphate hydrolase (MurQ) from Haemophilus influenzae with a bound inhibitor. Hadi T; Hazra S; Tanner ME; Blanchard JS Biochemistry; 2013 Dec; 52(51):9358-66. PubMed ID: 24251551 [TBL] [Abstract][Full Text] [Related]
2. Mechanistic studies on N-acetylmuramic acid 6-phosphate hydrolase (MurQ): an etherase involved in peptidoglycan recycling. Hadi T; Dahl U; Mayer C; Tanner ME Biochemistry; 2008 Nov; 47(44):11547-58. PubMed ID: 18837509 [TBL] [Abstract][Full Text] [Related]
3. Scission of the lactyl ether bond of N-acetylmuramic acid by Escherichia coli "etherase". Jaeger T; Arsic M; Mayer C J Biol Chem; 2005 Aug; 280(34):30100-6. PubMed ID: 15983044 [TBL] [Abstract][Full Text] [Related]
4. Bacteria's different ways to recycle their own cell wall. Mayer C; Kluj RM; Mühleck M; Walter A; Unsleber S; Hottmann I; Borisova M Int J Med Microbiol; 2019 Nov; 309(7):151326. PubMed ID: 31296364 [TBL] [Abstract][Full Text] [Related]
5. The transcriptional factors MurR and catabolite activator protein regulate N-acetylmuramic acid catabolism in Escherichia coli. Jaeger T; Mayer C J Bacteriol; 2008 Oct; 190(20):6598-608. PubMed ID: 18723630 [TBL] [Abstract][Full Text] [Related]
6. Peptidoglycan Recycling in Gram-Positive Bacteria Is Crucial for Survival in Stationary Phase. Borisova M; Gaupp R; Duckworth A; Schneider A; Dalügge D; Mühleck M; Deubel D; Unsleber S; Yu W; Muth G; Bischoff M; Götz F; Mayer C mBio; 2016 Oct; 7(5):. PubMed ID: 27729505 [TBL] [Abstract][Full Text] [Related]
7. MurQ Etherase is required by Escherichia coli in order to metabolize anhydro-N-acetylmuramic acid obtained either from the environment or from its own cell wall. Uehara T; Suefuji K; Jaeger T; Mayer C; Park JT J Bacteriol; 2006 Feb; 188(4):1660-2. PubMed ID: 16452451 [TBL] [Abstract][Full Text] [Related]
8. Identification of a Novel N-Acetylmuramic Acid Transporter in Tannerella forsythia. Ruscitto A; Hottmann I; Stafford GP; Schäffer C; Mayer C; Sharma A J Bacteriol; 2016 Nov; 198(22):3119-3125. PubMed ID: 27601356 [TBL] [Abstract][Full Text] [Related]
9. The first crystal structure of a family 129 glycoside hydrolase from a probiotic bacterium reveals critical residues and metal cofactors. Sato M; Liebschner D; Yamada Y; Matsugaki N; Arakawa T; Wills SS; Hattie M; Stubbs KA; Ito T; Senda T; Ashida H; Fushinobu S J Biol Chem; 2017 Jul; 292(29):12126-12138. PubMed ID: 28546425 [TBL] [Abstract][Full Text] [Related]
10. The Borisova M; Gisin J; Mayer C mBio; 2017 Mar; 8(2):. PubMed ID: 28351914 [TBL] [Abstract][Full Text] [Related]
11. Structures of the Escherichia coli PutA proline dehydrogenase domain in complex with competitive inhibitors. Zhang M; White TA; Schuermann JP; Baban BA; Becker DF; Tanner JJ Biochemistry; 2004 Oct; 43(39):12539-48. PubMed ID: 15449943 [TBL] [Abstract][Full Text] [Related]
12. Substrate-Induced Facilitated Dissociation of the Competitive Inhibitor from the Active Site of O-Acetyl Serine Sulfhydrylase Reveals a Competitive-Allostery Mechanism. Singh AK; Ekka MK; Kaushik A; Pandya V; Singh RP; Banerjee S; Mittal M; Singh V; Kumaran S Biochemistry; 2017 Sep; 56(37):5011-5025. PubMed ID: 28805060 [TBL] [Abstract][Full Text] [Related]
13. Mutational, kinetic, and NMR studies of the roles of conserved glutamate residues and of lysine-39 in the mechanism of the MutT pyrophosphohydrolase. Harris TK; Wu G; Massiah MA; Mildvan AS Biochemistry; 2000 Feb; 39(7):1655-74. PubMed ID: 10677214 [TBL] [Abstract][Full Text] [Related]
15. N-acetylmuramic acid 6-phosphate lyases (MurNAc etherases): role in cell wall metabolism, distribution, structure, and mechanism. Jaeger T; Mayer C Cell Mol Life Sci; 2008 Mar; 65(6):928-39. PubMed ID: 18049859 [TBL] [Abstract][Full Text] [Related]
16. Conformational Change in the Active Site of Streptococcal Unsaturated Glucuronyl Hydrolase Through Site-Directed Mutagenesis at Asp-115. Nakamichi Y; Oiki S; Mikami B; Murata K; Hashimoto W Protein J; 2016 Aug; 35(4):300-9. PubMed ID: 27402448 [TBL] [Abstract][Full Text] [Related]
17. Mutational, kinetic, and NMR studies of the mechanism of E. coli GDP-mannose mannosyl hydrolase, an unusual Nudix enzyme. Legler PM; Massiah MA; Mildvan AS Biochemistry; 2002 Sep; 41(35):10834-48. PubMed ID: 12196023 [TBL] [Abstract][Full Text] [Related]
18. Active site modulation in the N-acetylneuraminate lyase sub-family as revealed by the structure of the inhibitor-complexed Haemophilus influenzae enzyme. Barbosa JA; Smith BJ; DeGori R; Ooi HC; Marcuccio SM; Campi EM; Jackson WR; Brossmer R; Sommer M; Lawrence MC J Mol Biol; 2000 Oct; 303(3):405-21. PubMed ID: 11031117 [TBL] [Abstract][Full Text] [Related]
19. The crystal structure of bacillus cereus phosphonoacetaldehyde hydrolase: insight into catalysis of phosphorus bond cleavage and catalytic diversification within the HAD enzyme superfamily. Morais MC; Zhang W; Baker AS; Zhang G; Dunaway-Mariano D; Allen KN Biochemistry; 2000 Aug; 39(34):10385-96. PubMed ID: 10956028 [TBL] [Abstract][Full Text] [Related]
20. Enzymatic synthesis and semi-preparative isolation of N-acetylmuramic acid 6-phosphate. Unsleber S; Borisova M; Mayer C Carbohydr Res; 2017 Jun; 445():98-103. PubMed ID: 28505548 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]