BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

578 related articles for article (PubMed ID: 24251627)

  • 21. Salt stress-induced alterations in the root proteome of barley genotypes with contrasting response towards salinity.
    Witzel K; Weidner A; Surabhi GK; Börner A; Mock HP
    J Exp Bot; 2009; 60(12):3545-57. PubMed ID: 19671579
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Salt stress-induced alterations in the root proteome of Amaranthus cruentus L.
    Huerta-Ocampo JA; Barrera-Pacheco A; Mendoza-Hernández CS; Espitia-Rangel E; Mock HP; Barba de la Rosa AP
    J Proteome Res; 2014 Aug; 13(8):3607-27. PubMed ID: 24942474
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Proteome analysis of tobacco leaves under salt stress.
    Razavizadeh R; Ehsanpour AA; Ahsan N; Komatsu S
    Peptides; 2009 Sep; 30(9):1651-9. PubMed ID: 19573571
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Physiology and proteome responses of two contrasting rice mutants and their wild type parent under salt stress conditions at the vegetative stage.
    Ghaffari A; Gharechahi J; Nakhoda B; Salekdeh GH
    J Plant Physiol; 2014 Jan; 171(1):31-44. PubMed ID: 24094368
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rice suspension cultured cells are evaluated as a model system to study salt responsive networks in plants using a combined proteomic and metabolomic profiling approach.
    Liu D; Ford KL; Roessner U; Natera S; Cassin AM; Patterson JH; Bacic A
    Proteomics; 2013 Jun; 13(12-13):2046-62. PubMed ID: 23661342
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Isolation of the P5CS gene from reed canary grass and its expression under salt stress.
    Cong LL; Zhang XQ; Yang FY; Liu SJ; Zhang YW
    Genet Mol Res; 2014 Oct; 13(4):9122-33. PubMed ID: 25366804
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative Physiological and Proteomic Analysis of Two Sugar Beet Genotypes with Contrasting Salt Tolerance.
    Wang Y; Stevanato P; Lv C; Li R; Geng G
    J Agric Food Chem; 2019 May; 67(21):6056-6073. PubMed ID: 31070911
    [TBL] [Abstract][Full Text] [Related]  

  • 28. iTRAQ-Based Comparative Proteomic Analysis Provides Insights into Molecular Mechanisms of Salt Tolerance in Sugar Beet (
    Wu GQ; Wang JL; Feng RJ; Li SJ; Wang CM
    Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30518064
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparative proteomic analysis of canola leaves under salinity stress.
    Bandehagh A; Salekdeh GH; Toorchi M; Mohammadi A; Komatsu S
    Proteomics; 2011 May; 11(10):1965-75. PubMed ID: 21480525
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Salinity-induced changes in protein expression in the halophytic plant Nitraria sphaerocarpa.
    Chen J; Cheng T; Wang P; Liu W; Xiao J; Yang Y; Hu X; Jiang Z; Zhang S; Shi J
    J Proteomics; 2012 Sep; 75(17):5226-43. PubMed ID: 22728773
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Proteome and phosphoproteome differential expression under salinity stress in rice (Oryza sativa) roots.
    Chitteti BR; Peng Z
    J Proteome Res; 2007 May; 6(5):1718-27. PubMed ID: 17385905
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Proteomic analysis of salt-responsive proteins in oat roots (Avena sativa L.).
    Bai J; Liu J; Jiao W; Sa R; Zhang N; Jia R
    J Sci Food Agric; 2016 Aug; 96(11):3867-75. PubMed ID: 26689600
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Alterations in root proteome of salt-sensitive and tolerant barley lines under salt stress conditions.
    Mostek A; Börner A; Badowiec A; Weidner S
    J Plant Physiol; 2015 Feb; 174():166-76. PubMed ID: 25462980
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Proteome analysis of soybean hypocotyl and root under salt stress.
    Aghaei K; Ehsanpour AA; Shah AH; Komatsu S
    Amino Acids; 2009 Jan; 36(1):91-8. PubMed ID: 18264660
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transcriptomic Analysis of Short-Term Salt Stress Response in Watermelon Seedlings.
    Song Q; Joshi M; Joshi V
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32839408
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of proteins associated with ion homeostasis and salt tolerance in barley.
    Wu D; Shen Q; Qiu L; Han Y; Ye L; Jabeen Z; Shu Q; Zhang G
    Proteomics; 2014 Jun; 14(11):1381-92. PubMed ID: 24616274
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Overexpression of a novel soybean gene modulating Na+ and K+ transport enhances salt tolerance in transgenic tobacco plants.
    Chen H; He H; Yu D
    Physiol Plant; 2011 Jan; 141(1):11-8. PubMed ID: 20875056
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genome-wide expression profiling in leaves and roots of date palm (Phoenix dactylifera L.) exposed to salinity.
    Yaish MW; Patankar HV; Assaha DVM; Zheng Y; Al-Yahyai R; Sunkar R
    BMC Genomics; 2017 Mar; 18(1):246. PubMed ID: 28330456
    [TBL] [Abstract][Full Text] [Related]  

  • 39. iTRAQ-Based Protein Profiling and Biochemical Analysis of Two Contrasting Rice Genotypes Revealed Their Differential Responses to Salt Stress.
    Hussain S; Zhu C; Bai Z; Huang J; Zhu L; Cao X; Nanda S; Hussain S; Riaz A; Liang Q; Wang L; Li Y; Jin Q; Zhang J
    Int J Mol Sci; 2019 Jan; 20(3):. PubMed ID: 30696055
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Protein profile analysis of salt-responsive proteins in leaves and roots in two cultivars of creeping bentgrass differing in salinity tolerance.
    Xu C; Sibicky T; Huang B
    Plant Cell Rep; 2010 Jun; 29(6):595-615. PubMed ID: 20361191
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.