BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

396 related articles for article (PubMed ID: 24251827)

  • 21. Photodamage of lipid bilayers by irradiation of a fluorescently labeled cell-penetrating peptide.
    Meerovich I; Muthukrishnan N; Johnson GA; Erazo-Oliveras A; Pellois JP
    Biochim Biophys Acta; 2014 Jan; 1840(1):507-15. PubMed ID: 24135456
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of endocytosis on the uptake kinetics of luciferin-conjugated cell-penetrating peptides.
    Mäger I; Langel K; Lehto T; Eiríksdóttir E; Langel U
    Biochim Biophys Acta; 2012 Mar; 1818(3):502-11. PubMed ID: 22155257
    [TBL] [Abstract][Full Text] [Related]  

  • 23. How cationic lipids transfer nucleic acids into cells and across cellular membranes: recent advances.
    Rehman Zu; Zuhorn IS; Hoekstra D
    J Control Release; 2013 Feb; 166(1):46-56. PubMed ID: 23266451
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cellular uptake and fate of PEGylated gold nanoparticles is dependent on both cell-penetration peptides and particle size.
    Oh E; Delehanty JB; Sapsford KE; Susumu K; Goswami R; Blanco-Canosa JB; Dawson PE; Granek J; Shoff M; Zhang Q; Goering PL; Huston A; Medintz IL
    ACS Nano; 2011 Aug; 5(8):6434-48. PubMed ID: 21774456
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Plasma membrane depolarization reveals endosomal escape incapacity of cell-penetrating peptides.
    Serulla M; Anees P; Hallaj A; Trofimenko E; Kalia T; Krishnan Y; Widmann C
    Eur J Pharm Biopharm; 2023 Mar; 184():116-124. PubMed ID: 36709921
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nucleic acid delivery by cell penetrating peptides derived from dengue virus capsid protein: design and mechanism of action.
    Freire JM; Veiga AS; Rego de Figueiredo I; de la Torre BG; Santos NC; Andreu D; Da Poian AT; Castanho MA
    FEBS J; 2014 Jan; 281(1):191-215. PubMed ID: 24286593
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of gold nanoparticle mediated photoporation: vapor nanobubbles outperform direct heating for delivering macromolecules in live cells.
    Xiong R; Raemdonck K; Peynshaert K; Lentacker I; De Cock I; Demeester J; De Smedt SC; Skirtach AG; Braeckmans K
    ACS Nano; 2014 Jun; 8(6):6288-96. PubMed ID: 24870061
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Unraveling the Mechanisms of Peptide-Mediated Delivery of Nucleic Acids Using Electron Microscopy.
    Margus H; Juks C; Pooga M
    Methods Mol Biol; 2015; 1324():149-62. PubMed ID: 26202268
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cytoplasmic and nuclear delivery of a TAT-derived peptide and a beta-peptide after endocytic uptake into HeLa cells.
    Potocky TB; Menon AK; Gellman SH
    J Biol Chem; 2003 Dec; 278(50):50188-94. PubMed ID: 14517218
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cellular translocation of a γ-AApeptide mimetic of Tat peptide.
    Niu Y; Bai G; Wu H; Wang RE; Qiao Q; Padhee S; Buzzeo R; Cao C; Cai J
    Mol Pharm; 2012 May; 9(5):1529-34. PubMed ID: 22413929
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Translocation of HIV TAT peptide and analogues induced by multiplexed membrane and cytoskeletal interactions.
    Mishra A; Lai GH; Schmidt NW; Sun VZ; Rodriguez AR; Tong R; Tang L; Cheng J; Deming TJ; Kamei DT; Wong GC
    Proc Natl Acad Sci U S A; 2011 Oct; 108(41):16883-8. PubMed ID: 21969533
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A simulation study on nanoscale holes generated by gold nanoparticles on negative lipid bilayers.
    Lin JQ; Zheng YG; Zhang HW; Chen Z
    Langmuir; 2011 Jul; 27(13):8323-32. PubMed ID: 21634406
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In Vitro Assays: Friends or Foes of Cell-Penetrating Peptides.
    Liu J; Afshar S
    Int J Mol Sci; 2020 Jul; 21(13):. PubMed ID: 32630650
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The cell-penetrating peptide TAT(48-60) induces a non-lamellar phase in DMPC membranes.
    Afonin S; Frey A; Bayerl S; Fischer D; Wadhwani P; Weinkauf S; Ulrich AS
    Chemphyschem; 2006 Oct; 7(10):2134-42. PubMed ID: 16986196
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular dynamics simulations suggest a mechanism for translocation of the HIV-1 TAT peptide across lipid membranes.
    Herce HD; Garcia AE
    Proc Natl Acad Sci U S A; 2007 Dec; 104(52):20805-10. PubMed ID: 18093956
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cell-Surface Interactions on Arginine-Rich Cell-Penetrating Peptides Allow for Multiplex Modes of Internalization.
    Futaki S; Nakase I
    Acc Chem Res; 2017 Oct; 50(10):2449-2456. PubMed ID: 28910080
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Arginine-rich cell-penetrating peptides.
    Schmidt N; Mishra A; Lai GH; Wong GC
    FEBS Lett; 2010 May; 584(9):1806-13. PubMed ID: 19925791
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Translocation mechanism(s) of cell-penetrating peptides: biophysical studies using artificial membrane bilayers.
    Di Pisa M; Chassaing G; Swiecicki JM
    Biochemistry; 2015 Jan; 54(2):194-207. PubMed ID: 25490050
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Translocation of cell-penetrating peptides across the plasma membrane is controlled by cholesterol and microenvironment created by membranous proteins.
    Pae J; Säälik P; Liivamägi L; Lubenets D; Arukuusk P; Langel Ü; Pooga M
    J Control Release; 2014 Oct; 192():103-13. PubMed ID: 25016968
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genetic, cellular, and structural characterization of the membrane potential-dependent cell-penetrating peptide translocation pore.
    Trofimenko E; Grasso G; Heulot M; Chevalier N; Deriu MA; Dubuis G; Arribat Y; Serulla M; Michel S; Vantomme G; Ory F; Dam LC; Puyal J; Amati F; Lüthi A; Danani A; Widmann C
    Elife; 2021 Oct; 10():. PubMed ID: 34713805
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.