These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1476 related articles for article (PubMed ID: 24251957)

  • 1. In situ formed lithium sulfide/microporous carbon cathodes for lithium-ion batteries.
    Zheng S; Chen Y; Xu Y; Yi F; Zhu Y; Liu Y; Yang J; Wang C
    ACS Nano; 2013 Dec; 7(12):10995-1003. PubMed ID: 24251957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Promising Cell Configuration for Next-Generation Energy Storage: Li2S/Graphite Battery Enabled by a Solvate Ionic Liquid Electrolyte.
    Li Z; Zhang S; Terada S; Ma X; Ikeda K; Kamei Y; Zhang C; Dokko K; Watanabe M
    ACS Appl Mater Interfaces; 2016 Jun; 8(25):16053-62. PubMed ID: 27282172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ-formed Li2S in lithiated graphite electrodes for lithium-sulfur batteries.
    Fu Y; Zu C; Manthiram A
    J Am Chem Soc; 2013 Dec; 135(48):18044-7. PubMed ID: 24245559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Li2S Nanocrystals Confined in Free-Standing Carbon Paper for High Performance Lithium-Sulfur Batteries.
    Wu M; Cui Y; Fu Y
    ACS Appl Mater Interfaces; 2015 Sep; 7(38):21479-86. PubMed ID: 26349017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activated Li2S as a High-Performance Cathode for Rechargeable Lithium-Sulfur Batteries.
    Zu C; Klein M; Manthiram A
    J Phys Chem Lett; 2014 Nov; 5(22):3986-91. PubMed ID: 26276482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-capacity micrometer-sized Li2S particles as cathode materials for advanced rechargeable lithium-ion batteries.
    Yang Y; Zheng G; Misra S; Nelson J; Toney MF; Cui Y
    J Am Chem Soc; 2012 Sep; 134(37):15387-94. PubMed ID: 22909273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PVP-Assisted Synthesis of Uniform Carbon Coated Li2S/CB for High-Performance Lithium-Sulfur Batteries.
    Chen L; Liu Y; Zhang F; Liu C; Shaw LL
    ACS Appl Mater Interfaces; 2015 Nov; 7(46):25748-56. PubMed ID: 26529481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From Metal-Organic Framework to Li
    He J; Chen Y; Lv W; Wen K; Xu C; Zhang W; Li Y; Qin W; He W
    ACS Nano; 2016 Dec; 10(12):10981-10987. PubMed ID: 28024364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facile Synthesis of Lithium Sulfide Nanocrystals for Use in Advanced Rechargeable Batteries.
    Li X; Wolden CA; Ban C; Yang Y
    ACS Appl Mater Interfaces; 2015 Dec; 7(51):28444-51. PubMed ID: 26633238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Rate and Long-Term Cycle Stability of Li-S Batteries Enabled by Li
    Wang X; Bi X; Wang S; Zhang Y; Du H; Lu J
    ACS Appl Mater Interfaces; 2018 May; 10(19):16552-16560. PubMed ID: 29671567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Li2S Film Formation on Lithium Anode Surface of Li-S batteries.
    Liu Z; Bertolini S; Balbuena PB; Mukherjee PP
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4700-8. PubMed ID: 26836249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selenium@mesoporous carbon composite with superior lithium and sodium storage capacity.
    Luo C; Xu Y; Zhu Y; Liu Y; Zheng S; Liu Y; Langrock A; Wang C
    ACS Nano; 2013 Sep; 7(9):8003-10. PubMed ID: 23944942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene-Li2S-Carbon Nanocomposite for Lithium-Sulfur Batteries.
    Wu F; Lee JT; Zhao E; Zhang B; Yushin G
    ACS Nano; 2016 Jan; 10(1):1333-40. PubMed ID: 26647225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Li
    Yu H; Zeng P; Liu H; Zhou X; Guo C; Li Y; Liu S; Chen M; Guo X; Chang B; Wu T; Wang X
    ACS Appl Mater Interfaces; 2021 Jul; 13(28):32968-32977. PubMed ID: 34227798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-Assembled Framework Formed During Lithiation of SnS
    Yin K; Zhang M; Hood ZD; Pan J; Meng YS; Chi M
    Acc Chem Res; 2017 Jul; 50(7):1513-1520. PubMed ID: 28682057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Scalable Cathode Chemical Prelithiation Strategy for Advanced Silicon-Based Lithium Ion Full Batteries.
    Liu Z; Ma S; Mu X; Li R; Yin G; Zuo P
    ACS Appl Mater Interfaces; 2021 Mar; 13(10):11985-11994. PubMed ID: 33683090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanostructured Li
    Mollania H; Zhang C; Du R; Qi X; Li J; Horta S; IbaƱez M; Keller C; Chenevier P; Oloomi-Buygi M; Cabot A
    ACS Appl Mater Interfaces; 2023 Dec; 15(50):58462-58475. PubMed ID: 38052030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Air-Stable Li
    Qi X; Jin X; Xu H; Pan Y; Yang F; Zhu Z; Ji J; Jiang R; Du H; Ji Y; Yang D; Qie L; Huang Y
    Adv Mater; 2024 Apr; 36(14):e2310756. PubMed ID: 38174831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 74.