These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Effects of graft densities and chain lengths on separation of bioactive compounds by nanolayered thermoresponsive polymer brush surfaces. Nagase K; Kobayashi J; Kikuchi A; Akiyama Y; Kanazawa H; Okano T Langmuir; 2008 Jan; 24(2):511-7. PubMed ID: 18085801 [TBL] [Abstract][Full Text] [Related]
9. Chain conformation of a new class of PEG-based thermoresponsive polymer brushes grafted on silicon as determined by neutron reflectometry. Gao X; Kucerka N; Nieh MP; Katsaras J; Zhu S; Brash JL; Sheardown H Langmuir; 2009 Sep; 25(17):10271-8. PubMed ID: 19705903 [TBL] [Abstract][Full Text] [Related]
10. Temperature-responsive chromatography for the separation of biomolecules. Kanazawa H; Okano T J Chromatogr A; 2011 Dec; 1218(49):8738-47. PubMed ID: 21570080 [TBL] [Abstract][Full Text] [Related]
11. Preparation of thermo-responsive polymer brushes on hydrophilic polymeric beads by surface-initiated atom transfer radical polymerization for a highly resolutive separation of peptides. Mizutani A; Nagase K; Kikuchi A; Kanazawa H; Akiyama Y; Kobayashi J; Annaka M; Okano T J Chromatogr A; 2010 Sep; 1217(38):5978-85. PubMed ID: 20723903 [TBL] [Abstract][Full Text] [Related]
12. Thermoresponsive polymer brush surfaces with hydrophobic groups for all-aqueous chromatography. Nagase K; Kumazaki M; Kanazawa H; Kobayashi J; Kikuchi A; Akiyama Y; Annaka M; Okano T ACS Appl Mater Interfaces; 2010 Apr; 2(4):1247-53. PubMed ID: 20380388 [TBL] [Abstract][Full Text] [Related]
13. Modulation of graft architectures for enhancing hydrophobic interaction of biomolecules with thermoresponsive polymer-grafted surfaces. Idota N; Kikuchi A; Kobayashi J; Sakai K; Okano T Colloids Surf B Biointerfaces; 2012 Nov; 99():95-101. PubMed ID: 22143027 [TBL] [Abstract][Full Text] [Related]
14. On the separation of small molecules by means of nano-liquid chromatography with methacrylate-based macroporous polymer monoliths. Nischang I; Brüggemann O J Chromatogr A; 2010 Aug; 1217(33):5389-97. PubMed ID: 20598699 [TBL] [Abstract][Full Text] [Related]
15. High stability of thermoresponsive polymer-brush-grafted silica beads as chromatography matrices. Nagase K; Kobayashi J; Kikuchi A; Akiyama Y; Kanazawa H; Okano T ACS Appl Mater Interfaces; 2012 Apr; 4(4):1998-2008. PubMed ID: 22452297 [TBL] [Abstract][Full Text] [Related]
16. Self-Assembly Behavior of Thermoresponsive Oligo(ethylene glycol) Methacrylates Random Copolymer. Peng B; Grishkewich N; Yao Z; Han X; Liu H; Tam KC ACS Macro Lett; 2012 May; 1(5):632-635. PubMed ID: 35607076 [TBL] [Abstract][Full Text] [Related]
17. On the chromatographic efficiency of analytical scale column format porous polymer monoliths: interplay of morphology and nanoscale gel porosity. Nischang I J Chromatogr A; 2012 May; 1236():152-63. PubMed ID: 22443891 [TBL] [Abstract][Full Text] [Related]
18. Engineering adhesion to thermoresponsive substrates: effect of polymer composition on liquid-liquid-solid wetting. Gambinossi F; Sefcik LS; Wischerhoff E; Laschewsky A; Ferri JK ACS Appl Mater Interfaces; 2015 Feb; 7(4):2518-28. PubMed ID: 25569588 [TBL] [Abstract][Full Text] [Related]
19. Preparation of porous polymer monolithic column using functionalized graphene oxide as a functional crosslinker for high performance liquid chromatography separation of small molecules. Li Y; Qi L; Ma H Analyst; 2013 Sep; 138(18):5470-8. PubMed ID: 23884304 [TBL] [Abstract][Full Text] [Related]