BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 24252245)

  • 1. An advanced phantom study assessing the feasibility of neuronal current imaging by ultra-low-field NMR.
    Körber R; Nieminen JO; Höfner N; Jazbinšek V; Scheer HJ; Kim K; Burghoff M
    J Magn Reson; 2013 Dec; 237():182-190. PubMed ID: 24252245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Are brain currents detectable by means of low-field NMR? A phantom study.
    Höfner N; Albrecht HH; Cassará AM; Curio G; Hartwig S; Haueisen J; Hilschenz I; Körber R; Martens S; Scheer HJ; Voigt J; Trahms L; Burghoff M
    Magn Reson Imaging; 2011 Dec; 29(10):1365-73. PubMed ID: 21907519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SQUID-sensor-based ultra-low-field MRI calibration with phantom images: towards quantitative imaging.
    Dabek J; Vesanen PT; Zevenhoven KC; Nieminen JO; Sepponen R; Ilmoniemi RJ
    J Magn Reson; 2012 Nov; 224():22-31. PubMed ID: 23000977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous magnetoencephalography and SQUID detected nuclear MR in microtesla magnetic fields.
    Volegov P; Matlachov AN; Espy MA; George JS; Kraus RH
    Magn Reson Med; 2004 Sep; 52(3):467-70. PubMed ID: 15334563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal noise calculation method for precise estimation of the signal-to-noise ratio of ultra-low-field MRI with an atomic magnetometer.
    Yamashita T; Oida T; Hamada S; Kobayashi T
    J Magn Reson; 2012 Feb; 215():100-8. PubMed ID: 22261121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Demonstration of full tensor current density imaging using ultra-low field MRI.
    Hömmen P; Storm JH; Höfner N; Körber R
    Magn Reson Imaging; 2019 Jul; 60():137-144. PubMed ID: 30898636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast Room Temperature Very Low Field-Magnetic Resonance Imaging System Compatible with MagnetoEncephaloGraphy Environment.
    Galante A; Sinibaldi R; Conti A; De Luca C; Catallo N; Sebastiani P; Pizzella V; Romani GL; Sotgiu A; Della Penna S
    PLoS One; 2015; 10(12):e0142701. PubMed ID: 26630172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimized 3D co-registration of ultra-low-field and high-field magnetic resonance images.
    Guidotti R; Sinibaldi R; De Luca C; Conti A; Ilmoniemi RJ; Zevenhoven KCJ; Magnelind PE; Pizzella V; Del Gratta C; Romani GL; Della Penna S
    PLoS One; 2018; 13(3):e0193890. PubMed ID: 29509780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stimulus-induced Rotary Saturation (SIRS): a potential method for the detection of neuronal currents with MRI.
    Witzel T; Lin FH; Rosen BR; Wald LL
    Neuroimage; 2008 Oct; 42(4):1357-65. PubMed ID: 18684643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Avoiding eddy-current problems in ultra-low-field MRI with self-shielded polarizing coils.
    Nieminen JO; Vesanen PT; Zevenhoven KC; Dabek J; Hassel J; Luomahaara J; Penttilä JS; Ilmoniemi RJ
    J Magn Reson; 2011 Sep; 212(1):154-60. PubMed ID: 21784681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of nanotesla AC magnetic fields using steady-state SIRS and ultra-low field MRI.
    Sveinsson B; Koonjoo N; Zhu B; Witzel T; Rosen MS
    J Neural Eng; 2020 Jun; 17(3):034001. PubMed ID: 32268305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid ultra-low-field MRI and magnetoencephalography system based on a commercial whole-head neuromagnetometer.
    Vesanen PT; Nieminen JO; Zevenhoven KC; Dabek J; Parkkonen LT; Zhdanov AV; Luomahaara J; Hassel J; Penttilä J; Simola J; Ahonen AI; Mäkelä JP; Ilmoniemi RJ
    Magn Reson Med; 2013 Jun; 69(6):1795-804. PubMed ID: 22807201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SQUID-detected ultra-low field MRI.
    Espy M; Matlashov A; Volegov P
    J Magn Reson; 2013 Mar; 228():1-15. PubMed ID: 23333456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polarization encoding as a novel approach to MRI.
    Nieminen JO; Burghoff M; Trahms L; Ilmoniemi RJ
    J Magn Reson; 2010 Feb; 202(2):211-6. PubMed ID: 20005138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MRI detection of weak magnetic fields due to an extended current dipole in a conducting sphere: a model for direct detection of neuronal currents in the brain.
    Konn D; Gowland P; Bowtell R
    Magn Reson Med; 2003 Jul; 50(1):40-9. PubMed ID: 12815677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic resonance imaging at frequencies below 1 kHz.
    Hilschenz I; Körber R; Scheer HJ; Fedele T; Albrecht HH; Mario Cassará A; Hartwig S; Trahms L; Haase J; Burghoff M
    Magn Reson Imaging; 2013 Feb; 31(2):171-7. PubMed ID: 22898690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gradient-excitation encoding combined with frequency and phase encodings for three-dimensional ultra-low-field MRI.
    Dabek J; Zevenhoven KC; Nieminen JO; Vesanen PT; Sepponen R; Ilmoniemi RJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1093-7. PubMed ID: 23366086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SQUID-detected ultra-low field MRI.
    Espy M; Matlashov A; Volegov P
    J Magn Reson; 2013 Apr; 229():127-41. PubMed ID: 23452838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of magnetic field fluctuation on ultra-low field MRI measurements in the unshielded laboratory environment.
    Liu C; Chang B; Qiu L; Dong H; Qiu Y; Zhang Y; Krause HJ; Offenhäusser A; Xie X
    J Magn Reson; 2015 Aug; 257():8-14. PubMed ID: 26037135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuronal current detection with low-field magnetic resonance: simulations and methods.
    Cassará AM; Maraviglia B; Hartwig S; Trahms L; Burghoff M
    Magn Reson Imaging; 2009 Oct; 27(8):1131-9. PubMed ID: 19269766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.